Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs (Review)

Gonzalez Garay AGG, Molano Franco D, Nieto Estrada VH, Martí-Carvajal AJ, Arevalo-Rodriguez I

www.cochranelibrary.com
Table of Contents

1. **Header** .. 1
2. **Abstract** .. 1
3. **Plain Language Summary** .. 2
4. **Summary of Findings for the Main Comparison** 4
5. **Background** .. 6
6. **Objectives** .. 8
7. **Methods** .. 8
8. **Results** .. 11
 - Figure 1. .. 12
 - Figure 2. .. 14
 - Figure 3. .. 15
9. **Additional Summary of Findings** 18
10. **Discussion** .. 25
11. **Authors' Conclusions** ... 26
12. **Acknowledgements** ... 27
13. **References** .. 27
14. **Characteristics of Studies** 35
15. **Data and Analyses** ... 67
 - Analysis 1.1. Comparison 1 Spironolactone: spironolactone vs. placebo, Outcome 1 Risk of acute mountain sickness. 67
16. **Appendices** .. 67
17. **Contributions of Authors** 82
18. **Declarations of Interest** .. 83
19. **Sources of Support** ... 83
20. **Differences between Protocol and Review** 84
Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs

Alejandro Gabriel G Gonzalez Garay¹, Daniel Molano Franco², Víctor H Nieto Estrada³, Arturo J Martí-Carvajal⁴, Ingrid Arevalo-Rodriguez⁶

¹Methodology Research Unit, National Institute of Pediatrics, Mexico City, Mexico. ²Department of Critical Care, Fundacion Universitaria de Ciencias de la Salud, Hospital de San José, Bogota, Colombia. ³Department of Critical Care, Fundacion Universitaria Sanitas, Colombia Clinic, Bogota, Colombia. ⁴Iberoamerican Cochrane Network, Valencia, Venezuela. ⁵Cochrane Ecuador. Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio Espejo, Universidad Tecnológica Equinoccial, Quito, Ecuador. ⁶Clinical Biostatistics Unit, Ramon y Cajal Institute for Health Research (IRYCIS), Madrid, Spain

Contact address: Ingrid Arevalo-Rodriguez, Cochrane Ecuador. Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio Espejo, Universidad Tecnológica Equinoccial, Av. Mariscal Sucre s/n y Av. Mariana de Jesús, Quito, Ecuador. inarev7@yahoo.com.

Editorial group: Cochrane Anaesthesia, Critical and Emergency Care Group.

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background
High altitude illness (HAI) is a term used to describe a group of mainly cerebral and pulmonary syndromes that can occur during travel to elevations above 2500 metres (~ 8200 feet). Acute mountain sickness (AMS), high altitude cerebral oedema (HACE) and high altitude pulmonary oedema (HAPE) are reported as potential medical problems associated with high altitude ascent. In this second review, in a series of three about preventive strategies for HAI, we assessed the effectiveness of five of the less commonly used classes of pharmacological interventions.

Objectives
To assess the clinical effectiveness and adverse events of five of the less commonly used pharmacological interventions for preventing acute HAI in participants who are at risk of developing high altitude illness in any setting.

Search methods
We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, LILACS and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) in May 2017. We adapted the MEDLINE strategy for searching the other databases. We used a combination of thesaurus-based and free-text search terms. We scanned the reference lists and citations of included trials and any relevant systematic reviews that we identified for further references to additional trials.

Selection criteria
We included randomized controlled trials conducted in any setting where one of five classes of drugs was employed to prevent acute HAI: selective 5-hydroxytryptamine(1) receptor agonists; N-methyl-D-aspartate (NMDA) antagonist; endothelin-1 antagonist; anticonvulsant drugs; and spironolactone. We included trials involving participants who are at risk of developing high altitude illness
(AMS or HACE, or HAPE, or both). We included participants with and without a history of high altitude illness. We applied no age or gender restrictions. We included trials where the relevant medication was administered before the beginning of ascent. We excluded trials using these drugs during ascent or after ascent.

Data collection and analysis

We used the standard methodological procedures employed by Cochrane.

Main results

We included eight studies (334 participants, 9 references) in this review. Twelve studies are ongoing and will be considered in future versions of this review as appropriate. We have been unable to obtain full-text versions of a further 12 studies and have designated them as 'awaiting classification'. Four studies were at a low risk of bias for randomization; two at a low risk of bias for allocation concealment. Four studies were at a low risk of bias for blinding of participants and personnel. We considered three studies at a low risk of bias for blinding of outcome assessors. We considered most studies at a high risk of selective reporting bias.

We report results for the following four main comparisons.

Sumatriptan versus placebo (1 parallel study; 102 participants)

Data on sumatriptan showed a reduction of the risk of AMS when compared with a placebo (risk ratio (RR) = 0.43, CI 95% 0.21 to 0.84; 1 study, 102 participants; low quality of evidence). The one included study did not report events of HAPE, HACE or adverse events related to administrations of sumatriptan.

Magnesium citrate versus placebo (1 parallel study; 70 participants)

The estimated RR for AMS, comparing magnesium citrate tablets versus placebo, was 1.09 (95% CI 0.55 to 2.13; 1 study; 70 participants; low quality of evidence). In addition, the estimated RR for loose stools was 3.25 (95% CI 1.17 to 8.99; 1 study; 70 participants; low quality of evidence). The one included study did not report events of HAPE or HACE.

Spironolactone versus placebo (2 parallel studies; 205 participants)

Pooled estimation of RR for AMS was not performed due to considerable heterogeneity between the included studies ($P^2 = 72\%$). RR from individual studies was 0.40 (95% CI 0.12 to 1.31) and 1.44 (95% CI 0.79 to 2.01; very low quality of evidence). No events of HAPE or HACE were reported. Adverse events were not evaluated.

Acetazolamide versus spironolactone (1 parallel study; 232 participants)

Data on acetazolamide compared with spironolactone showed a reduction of the risk of AMS with the administration of acetazolamide (RR = 0.36, 95% CI 0.18 to 0.70; 232 participants; low quality of evidence). No events of HAPE or HACE were reported. Adverse events were not evaluated.

Authors’ conclusions

This Cochrane Review is the second in a series of three providing relevant information to clinicians and other interested parties on how to prevent high altitude illness. The assessment of five of the less commonly used classes of drugs suggests that there is a scarcity of evidence related to these interventions. Clinical benefits and harms related to potential interventions such as sumatriptan are still unclear. Overall, the evidence is limited due to the low number of studies identified (for most of the comparison only one study was identified); limitations in the quality of the evidence (moderate to low); and the number of studies pending classification (24 studies awaiting classification or ongoing). We lack the large and methodologically sound studies required to establish or refute the efficacy and safety of most of the pharmacological agents evaluated in this review.

PLAIN LANGUAGE SUMMARY

Medicines less commonly used for preventing high altitude illness

Background

High altitude illness (HAI) is a term used to describe a group of brain and lung conditions that can occur during travel to altitudes above 2500 metres (~ 8200 feet). HAI-related conditions are generally characterized by headache, nausea, vomiting and tiredness (often called
acute mountain sickness), but primarily affect the brain (drowsiness, confusion or unconsciousness) or the lungs (cough, breathlessness) in different individuals. We assessed five classes of medicines less commonly used to prevent the onset of this illness in this review.

Study characteristics

The evidence is current to May 2017. We included eight studies and 334 participants related to five different classes of medicines sometimes recommended for HAI prevention. These medicines included those that mimic the action of serotonin at selected sites (selective 5-hydroxytryptamine(1) receptor agonists), medicines that regulate the action of calcium (N-methyl-D-aspartate (NMDA) antagonist), medicines that promote dilation of the blood vessels (endothelin-1 antagonist), medicines that prevent a neuron (nerve cell) from ‘firing’ (initiating an action) and convulsions from developing (anticonvulsant medicines), as well as medicines that regulate the body’s sodium and water levels (spironolactone). All studies were undertaken in high altitude mountain areas. The participants ranged between 16 and 65 years of age. Only one study included people at a high risk of this condition due to their history of HAI. Four trials provided the intervention between one to three days prior to the ascent (50%), and three trials less than 24 hours prior (37.5%). The participants in all these studies reached a final altitude of between 3500 and 5895 metres above sea level. Only one of the eight included studies did not provide clear information about the source of funding (12.5%). Twenty-four additional studies were classified as ongoing (12), or awaiting classification (12; unable to obtain full texts).

Key results

The assessment of the less commonly used pharmacological interventions suggest that there is a scarcity of evidence related to these interventions. For most of the assessed comparisons, we only found evidence from a single study. Clinical benefits and harms related to potential interventions such as sumatriptan are still unclear.

Quality of the evidence

The quality of the evidence was rated from low to very low. Several studies had quality shortcomings such as only having small sample sizes and therefore generating uncertain results. For most of the medicines evaluated, additional research is required to clarify their effectiveness and safety.
SUMMARY OF FINDINGS FOR THE MAIN COMPARISON

Sumatriptan compared with placebo for preventing high altitude illness

Patient or population: participants at risk of high altitude illness
Setting: High altitude (Ecuador)
Intervention: sumatriptan
Comparison: placebo

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of Participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assumed risk</td>
<td>Corresponding risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>412 per 1000 (91 to 346)</td>
<td>RR 0.43 (0.21 to 0.84)</td>
<td>102 (1 study)</td>
<td>⊕⊕⊕⊕ Low¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk of acute mountain sickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk of high altitude pulmonary oedema</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk of high altitude cerebral oedema</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk of adverse events</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not reported</td>
<td></td>
</tr>
</tbody>
</table>

* The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio
GRADE Working Group grades of evidence

High quality: further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: we are very uncertain about the estimate.

1 Downgraded 2 levels due to imprecision.
BACKGROUND

High altitude illness (HAI) is a term used to describe a group of cerebral and pulmonary syndromes that can occur during travel to elevations above 2500 metres (m) (~ 8200 feet). HAI is commonly classified as high (1500 m to 3500 m), very high (above 3500 m to 5500 m) and extreme (above 5500 m) (Flaherty 2016; Kayser 2012; Khodaei 2016; Low 2012; Paralikar 2010; Zafren 2014). Because of the large number of people who ascend rapidly to between 2500 m and 3500 m, high altitude illness is common in this height range as a result of hypoxia (Davis 2017; Paralikar 2010). Although the proportion of oxygen remains unchanged at 20.93%, increases in altitude result in a lower partial pressure of oxygen in the inspired air (Anonymous 1892; Wilson 2009). This reduction in the driving pressure of oxygen along the oxygen cascade from the lungs to the tissues can compromise the supply of oxygen to the tissues (Wilson 2009), especially the cardiovascular and pulmonary systems (Leissner 2009). The physiological responses to hypoxia and acclimatization related to HAI include hyperventilation (increased depth and rate of breathing); elevation of systemic blood pressure; and tachycardia (elevations of heart rate) (Leissner 2009; Naeije 2010). However, in many instances these physiological changes may be inadequate, so that the ascent to high altitude and the attendant hypoxia are complicated by altitude-associated medical illness (Luks 2017; Palmer 2010), which is also known as high altitude illness (HAI).

Description of the condition

High altitude illness (HAI)

As mentioned earlier, HAI is a term used to describe a group of mainly cerebral and pulmonary syndromes that can occur during travel to elevations above 2500 metres. There are two types of mountain sickness: acute mountain sickness; and chronic mountain sickness (CMS), also called Monge’s disease (Monge 1942). Acute hypoxia, acute mountain sickness (AMS), high altitude cerebral oedema (HACE), high altitude pulmonary oedema (HAPE), cerebrovascular syndromes, peripheral oedema, retinopathy, thromboembolism, sleep disorders and periodic breathing, high altitude pharyngitis and bronchitis, ultraviolet exposure and keratitis (snow blindness), and exacerbation of pre-existing illness are reported as potential medical problems associated with high altitude ascent (CATMAT 2007; Kayser 2012; Khodaei 2016; Palmer 2010; Schoene 2008). Factors such as the rate of ascent, the absolute change in altitude, and individual physiology are factors usually implicated in the development of these conditions (Flaherty 2016; Leissner 2009; Low 2012; Luks 2017; Palmer 2010; Zafren 2014). The risk categories for acute mountain sickness are shown in Appendix 1 (Luks 2010).

In the 19th century Dr Daniel Vergara, a Mexican physiologist, pioneered studies on high altitude physiology and the physiological and anatomical mechanisms of adaptation to high elevations. Forty years later Dr Carlos Monge, a Peruvian physiologist, reported his ideas on this issue. The work of these pioneers was summarized early this century (Rodríguez de Romo 2002). Both the physiology and pathophysiology of high altitude have recently been widely reviewed (Bärtsch 2007; Davis 2017; Leissner 2009; Luks 2017; Palmer 2010; Paralikar 2010). In brief, these reviews confirm both the increase in respiratory rate and increase in haemoglobin concentration on exposure to low oxygen pressure. They identify the rate of ascent, the absolute change in altitude and individual variation in physiology as the primary determinants of whether HAI will develop or not (Palmer 2010). In addition, HAI is considered an important cause of mountain mortality (Windsor 2009).

Acute mountain sickness (AMS) or high altitude cerebral oedema (HACE)

AMS is a disorder with prominent neurological features, characterized by headache, anorexia, nausea and sometimes vomiting, light-headedness, insomnia, and fatigue (Bailey 2009; Leissner 2009; Palmer 2010). Headache is the most prevalent symptom of acute mountain sickness. In contrast, HACE is a potentially fatal neurological disorder and it is characterized by altered consciousness or ataxia (Bailey 2009; Hackett 2004; Imray 2010), or both, in an individual with AMS. If left untreated, HACE can result in death due to cerebral oedema (Bailey 2009). HACE is widely viewed as the end stage of AMS and is normally preceded by symptoms of AMS, which suggest a similar pathophysiological process (Bailey 2009; Imray 2010; Palmer 2010). It has been suggested that both syndromes could share a common pathophysiology linked by intracranial hypertension (Bailey 2009; Davis 2017; Kallenborn 2007; Luks 2017; Mairer 2012; Schoonman 2008; Wilson 2009). The severity of AMS can be scored using questionnaires such as the Lake Louise Questionnaire, Environmental Symptoms Questionnaire, or by the use of a simple analogue scale (Imray 2010). Headache is a very common symptom at altitude and some authors have suggested it could be viewed as a distinct clinical entity.

The definition of AMS seems to be problematic, as it will vary greatly between studies. A Lake Louise Score greater than 2 (including headache) is not equivalent to a criterion score of 0.70 with AMS-C (cerebral) from the Environmental Symptoms Questionnaire (Maggiorini 1998). The value of the AMS-R score is questionable for diagnosing AMS (Dumont 2000). Pathophysiology with a focus on the molecular basis of AMS and HACE has been widely described by Bailey 2009; and advances in the genetics, molecular mechanisms, and physiology that underpin them have been extensively described by Wilson 2009. This review will treat headache as a common and early symptom of AMS. Indeed, the exact definition of what constitutes AMS will vary when using different scoring systems and when interpreted by different authors.
High altitude pulmonary oedema (HAPE)

HAPE is a non-cardiogenic pulmonary oedema (Luks 2008a; Schoene 2004; Stream 2008). It is characterized by cough, progressive dyspnoea with exertion, and decreased exercise tolerance, generally developing within two to four days after arrival at high altitude (Palmer 2010; Stream 2008). It is rare after one week of acclimatization at a particular altitude (Maggiorini 2010; Palmer 2010). Hypoxia is the trigger that results in a complex cascade of events leading to HAPE (Stream 2008). Essentially, HAPE is due to a “persistent imbalance between the forces that drive water into the airspace and the biologic mechanisms for its removal” (Scherrer 2010); and the hallmark of this condition is hypoxic pulmonary hypertension. The hypertension may be mediated via at least four potential mechanisms: defective pulmonary nitric oxide synthesis; exaggerated endothelin-1 synthesis; exaggerated sympathetic activation; and a defect in alveolar transepithelial sodium transport (Scherrer 2010). An extensive review of pulmonary hypertension induced by HAI is reported by Pasha 2010.

Epidemiology of acute HAI

It has been estimated that 84% of people who fly directly to 3860 m are affected by AMS (Murdoch 1995). The risk of HACE and HAPE is much lower than for AMS, with estimates in the range of 0.1% to 4.0% (Basnyat 2003). The rate of ascent, altitude reached (especially the sleeping altitude), and individual susceptibility have been proposed as the most important risk factors for the development of HAI conditions (Basnyat 2003; Schneider 2002). Other presumptive risk factors are history of HAI and permanent residence lower than 900 m, exertion in children and adults (Basnyat 2003), obesity (Ri-Li 2003), and coronary heart disease (Dehnert 2010). It is advisable that those with asthma make sure that their condition is well controlled before they undertake exertion at altitude (CATMAT 2007). See Appendix 2 for other medical terms.

Description of the intervention

The risk of high altitude illness (HAI) begins with a non-acclimatized subject ascending to an altitude higher than 2500 metres (Flaherty 2016; Kayser 2012; Khodaei 2016; Low 2012; Paralikar 2010). However, a susceptible individual may develop acute mountain sickness (AMS) at intermediate altitude such as 2100 metres (Davis 2017). Several interventions to prevent HAI conditions, especially AMS, have been described, compiled, and published in guidelines and consensus statements (CATMAT 2007; Flaherty 2016; Kayser 2012; Khodaei 2016; Low 2012; Luks 2010; Ritchie 2012; Seupaul 2012; Zafren 2014). Interventions for HAI prevention can be classified as pharmacological and non-pharmacological (Bärtsch 1992; Luks 2010; Luks 2008b; Wright 2008). The Committee to Advise on Tropical Medicine and Travel proposed a consensus for HAI in 2007, describing prevention and treatment approaches among several topics regarding this medical condition (CATMAT 2007).

In 2014 the Wilderness Medical Society (WMS) published an update of their 2010 guidelines, detailing prevention and treatment directives for HAI (AMS, HACE, HAPE) (Luks 2010; Luks 2014). This guideline was developed by an expert panel that compiled and classified all available evidence on HAI prevention and treatment. Recommendations, based on evidence using the American College of Chest Physicians’ strategies, were agreed upon. For AMS and HACE, the experts proposed a risk classification where low-risk participants are discarded for prevention interventions; for HAPE, pharmacological prophylaxis is recommended for participants with a previous diagnosis of HAI (Luks 2014).

These previous reviews have not given a clear indication as to which preventative strategies (whether pharmacological or non-pharmacological) are of most use, nor how one might modify the approach in different situations. For example, while CATMAT 2007 suggests that in general the safest method of prevention is graded ascent, it is not always clear which of the alternative strategies is to be preferred if, for some reason, this is not possible, nor what the major adverse effects of combined approaches might be.

Previously, we assessed six groups of the most common interventions for the prevention of HAI (Nieto 2017). In this Cochrane Review we assess five classes of pharmacological interventions less commonly recommended for this condition. Those classes are as follows.

1. Selective 5-hydroxytryptamine(1) receptor agonist: sumatriptan (Jafarian 2007).
4. Anticonvulsant drugs: gabapentin (Jafarian 2008); phenytoin (Wohns 1986).

How the intervention might work

Extensive reviews for the pharmacotherapy of HAI have recently been published (Maggiorini 2010; Wright 2008). Below is a list and brief description of the less common classes of drugs that have been suggested to date. Appendix 3 provides more detail and discusses the potential adverse effects of each class.

1. Selective 5-hydroxytryptamine(1) receptor agonist (sumatriptan): a drug of the family of triptans, characterized by having an agonist effect on vascular serotonin 5-hydroxytryptamine (5-HT1) receptors located in the blood vessels of the brain. The binding of sumatriptan to the 5-HT1
receptor constricts specific large cranial blood vessels without compromising cerebral flow (Jafarian 2007).

2. N-methyl-D-aspartate (NMDA) antagonist: magnesium. NMDA receptors are cell components in glutamate-dependent neuronal synapses, which regulate the entry of calcium and the potential for excitatory neurons. It has been noticed that, in the presence of prolonged stimulus, NMDA receptors favour the accumulation of calcium in neurons and its consequent degeneration. The antagonistic drugs of NMDA, such as magnesium, block these receptors and prevent calcium entering neurons, as well as decrease the changes in their structure and function (Garthwaite 2006).

3. Endothelin-1 antagonist (bosentan): endothelin 1 is a peptide produced in the endothelium, which binds to its receptors in the lung capillaries, and stimulates the growth of smooth muscle and blood vessel contraction, which is increased at high altitude too. Bosentan is a competitive antagonist of endothelin-1 receptors, which produces vasodilation and decreased pulmonary vascular resistance (Bevacqua 2013; Goerke 1995; Yanagisawa 1988).

4. Anticonvulsant drugs (gabapentin, phenytoin). Gabapentin is a derivative of the neurotransmitter gamma-aminobutyric acid (GABA) which partially reduces the response to stimulation of the NMDA receptors, preventing development of neuronal excitation and convulsions; it has also been suggested that it may decrease associated pain. Its mechanism of action is currently unknown (Cheng 2006; Maneuf 2006; Mathew 2001). Phenytoin is an anticonvulsant agent which binds to voltage gated sodium channel, inhibits the entry of sodium into the neuron and slows the release of potassium, which prevents neuronal depolarization and favouring cerebral protection (Burse 1982).

5. Spirolactone is a potassium-sparing diuretic that acts by antagonism of aldosterone in the distal renal tubules, increasing the secretion of water and sodium and decreasing the excretion of potassium. (Brookfield 1977; Currie 1976; Jain 1986; Meyers 1980; Snell 1977; Spirolactone in acute mountain sickness 1977; Turnbull 1980).

See Appendix 3 for adverse events of the pharmacological interventions.

Objectives

To assess the clinical effectiveness and adverse events of five of the less commonly used pharmacological interventions for preventing acute HAI in participants who are at risk of developing high altitude illness in any setting.

Methods

Types of studies

We included randomized controlled trials (RCTs) irrespective of publication status (unpublished trials or published as articles, abstracts, or letters), language and country. We applied no restrictions with respect to periods of follow-up. We excluded quasi-randomized studies and prospective observational studies for evaluating clinical effectiveness.
Types of participants
We included trials involving participants who are at risk of developing high altitude illness (such as AMS or HACE, or HAPE, or both). We included participants with and without a history of high altitude illness. We applied no age or gender restrictions.

Types of interventions
The published protocol of this review included all agents to prevent high altitude illness (Martí-Carvajal 2012). However we decided to split the topic into a series of three publications about the prevention of this condition (See Differences between protocol and review section). This is the second of three reviews and includes the following five groups of the less common classes of drugs used to prevent acute HAI.
1. Selective 5-hydroxytryptamine(1) receptor agonist (sumatriptan).
2. N-methyl-D-aspartate (NMDA) antagonist (magnesium).
3. Endothelin-1 antagonist (bosentan).
4. Anticonvulsant drugs (gabapentin; phenytoin).
5. Spironolactone.
We included trials where the relevant medication was administered before the beginning of ascent. We excluded trials using these drugs during ascent or after ascent.

Types of outcome measures
The following outcome measures were modified from the published protocol (Martí-Carvajal 2012). This is a change to the protocol and is explained in the Differences between protocol and review section.

Primary outcomes
1. Risk of acute mountain sickness (AMS – as defined by each study) at any time

Secondary outcomes
1. Risk of high altitude pulmonary oedema (HAPE – as defined by each study) at any time.
2. Risk of high altitude cerebral oedema (HACE – as defined by each study), at any time.
3. Risk of adverse events in general, including paraesthesia, at any time.
4. Differences in HAI/AMS scores at high altitude. We analysed the differences between groups in any measure of AMS severity and between the first to the 48th hour at high altitude.

Search methods for identification of studies
The same search methods were used for the identification of potential studies and are common for the three reviews included in this set.

Electronic searches
We identified RCTs through literature searching with systematic and sensitive search strategies as outlined in Chapter 6.4 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). We did not apply restrictions to language or publication status.

We searched the following databases for relevant trials.
1. Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 4) in the Cochrane Library (searched 20 May 2017);
2. MEDLINE (Ovid SP, 1966 to May week 3 2017);
3. Embase (Ovid SP, 1988 to May week 3 2017);
We developed a subject-specific search strategy in MEDLINE and used that as the basis for the search strategies in the other databases listed. Where appropriate, the search strategy was expanded with search terms for identifying RCTs. All search strategies can be found in Appendices 4 to 7 (Appendix 4; Appendix 5; Appendix 6; Appendix 7).

We scanned the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) for ongoing and unpublished trials (May 2017; Appendix 8). The search strategy was developed in consultation with the Cochrane Anaesthesia, Critical and Emergency Care Group Information Specialist.

Searching other resources
We scanned the reference lists and citations of included trials and any relevant systematic reviews that we identified for further references to additional trials.

Data collection and analysis
Data collection and analysis methods were common for the three reviews included in this series.

Selection of studies
Two review authors independently assessed each reference identified by the search against the inclusion criteria. We resolved any disagreements by discussion; a third author was consulted as an arbiter if we could not reach agreement. We retrieved in full those references which appeared to meet the inclusion criteria for further independent assessment by the same three review authors.
Data extraction and management
We used a pre-defined form to extract the following data: eligibility criteria, demographics (age, gender, country), rate of ascent (m/h), final altitude reached (m), AMS scale, design study, history of HAI, type of HAI, proposed intervention, and main outcomes, among others; (see Appendix 9 for details of the data extraction form). For eligible studies, two review authors extracted the data using the selected form. We resolved discrepancies through discussion or, if required, we involved a third author of this review. We entered data into Review Manager 5 (RevMan 5) software and checked it for accuracy.

Assessment of risk of bias in included studies
Three review authors independently assessed risk of bias for each study using the criteria outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). We resolved any disagreement by discussion. We judged the methodological quality of each study using Cochrane’s tool for assessing risk of bias, a two-part tool that addresses the following six specific domains: random sequence generation; allocation concealment; blinding of participants, personnel, and outcome assessors; incomplete outcome data; selective reporting; and other bias (Higgins 2011). The first part describes the risk of bias; the second part provides criteria for making judgements about the risk of bias from each of the six domains in the tool (Appendix 10). Based on this tool we implemented a 'Risk of bias' worksheet to be filled out for each study. The risk of bias was assessed by two authors in an independent fashion. We resolved any disagreement through consultation with an additional author. We displayed the results by creating a ‘Risk of bias’ graph and a ‘Risk of bias’ summary figure using RevMan 5 software, if appropriate. We present the risk of bias in the Results section. Likewise, we provide summary assessments of the risk of bias for each outcome within and across studies.

Measures of treatment effect
For dichotomous outcomes (such as risk of AMS or HAPE), we show results as summary risk ratios with 95% confidence intervals (CI). For continuous outcomes (such as differences in AMS scores), we present the results as summary mean differences (MD) or standardized mean differences (SMD) as appropriate, with 95% CI. For individual studies, we used the CS command in STATA 14.0 (www.stata.com/stata14), for estimation of risk ratios with the corresponding 95% CI. This is a change to the protocol (Martí-Carvajal 2012), and is explained in the Differences between protocol and review section. In addition, because we identified a considerable number of cross-over trials concerning assessed interventions, we included these studies separately and analysed this information using the criteria outlined in the Cochrane Handbook for Systematic Reviews of Interventions, Chapter 16.4 (Elbourne 2002; Higgins 2011; Stedman 2011), specially related to estimation of Mantel-Haenszel odds ratio (OR) for paired outcomes.

Unit of analysis issues
Martí-Carvajal 2012 (the published protocol) did not include considerations about any unit of analysis issues. However, we identified 12 cross-over studies in our search strategies and they were included in the analyses, but separate from the parallel studies. In brief, we used the methods recommended by Elbourne (Elbourne 2002; Stedman 2011). This is a change to the protocol (Martí-Carvajal 2012), and is explained in the Differences between protocol and review section.

Dealing with missing data
For all outcomes we carried out analyses on an intention-to-treat (ITT) basis as far as possible (i.e. we attempted to include all randomized participants in the denominator of the assessed groups in the analyses). Due to the fact that we included studies with missing information (especially standard deviations) or data not suitable for planned analyses, we followed the methods recommended by the Cochrane Handbook for Systematic Reviews of Interventions, Chapter 16.1.3 (Higgins 2011). In brief, we transformed median values and their interquartile ranges or range extracted from included studies to means and standard deviations according to Wán and colleagues (Hozo 2005; Wán 2014). This is a change to the protocol (Martí-Carvajal 2012), and is explained in the Differences between protocol and review section.

Assessment of heterogeneity
We used the I² statistic to measure statistical heterogeneity among the trials in each analysis. When we identified substantial heterogeneity, we explored it by prespecified subgroup analysis. The I² statistic describes the percentage of total variation among trials due to heterogeneity rather than sampling error (Higgins 2003). We considered there to be significant statistical heterogeneity if I² was greater than 50% (Higgins 2011). We assessed clinical and methodological diversity of the included studies in a comparison for sufficient homogeneity before choosing to estimate summary effect sizes.

Assessment of reporting biases
We planned to assess whether the review is subject to publication bias by using a funnel plot to graphically illustrate variability between trials. If asymmetry had been detected, we planned to explore causes other than publication bias. We planned to perform a funnel plot if we included 10 or more RCTs for comparison. However, due to scarcity of information we were not able to perform the mentioned analysis. This is a change to the protocol (Martí-Carvajal 2012), and is explained in the Differences between protocol and review section.
Data synthesis

We summarized the findings using the random-effects (DerSimonian-Laird) model. We carried out statistical analyses using RevMan 5 (Review Manager 2014). We accepted important differences where the effect size 95% confidence limits do not cross the value of no difference between groups. We planned to apply trial sequential analysis (TSA), as cumulative meta-analyses are at risk of producing random errors due to sparse data and repetitive testing of the accumulating data (Brok 2009; Lan 1983; Thorlund 2009; Weterlsv 2008; Weterlsve 2017). However, due to the scarcity of data for the assessed comparisons in this review, we decided not to report the TSA results in this case (all of them having only one study). This is a change from the published protocol (Martí-Carvajal 2012); (see the details in the Differences between protocol and review section). We will use TSA methods in our update if there are sufficient studies.

Subgroup analysis and investigation of heterogeneity

We investigated heterogeneity by an informed clinical evaluation of each outcome, combining data only when clinically appropriate. We also investigated statistical heterogeneity using the I² statistic as described above. For the primary outcomes, we considered subgroup analysis for the following factors, as appropriate.

1. Extreme altitude exposure versus high or very high exposure (high: 1500 to 3500 m; very high: 3500 to 5500 m; and extreme: above 5500 m) (Paralikar 2010).
2. Presence or absence of people at high risk of HAI.
3. Presence or absence of significant pre-existing disease: cardiovascular diseases, chronic obstructive pulmonary disease (COPD), diabetes mellitus.

However, due to scarcity of information we were not able to perform the planned analysis. This is a change to the protocol (Martí-Carvajal 2012), and is explained in the Differences between protocol and review section.

Sensitivity analysis

We performed a sensitivity analysis comparing the general results versus RCTs with high methodological quality (studies classified as having a ‘low risk of bias’ (Higgins 2011)). We chose only three core domains: generation of allocation sequence, incomplete outcome data, and selective reporting bias. However, due to scarcity of information we were not able to perform the planned analysis. This is a change to the protocol (Martí-Carvajal 2012), and is explained in the Differences between protocol and review section.

'Summary of findings' tables and GRADE

We developed 'Summary of findings' tables for the following comparisons.

1. Sumatriptan compared with placebo (Summary of findings for the main comparison).
2. Magnesium citrate compared with placebo (Summary of findings 2).
3. Spironolactone compared with placebo (Summary of findings 3).
4. Acetazolamide compared with spironolactone (Summary of findings 4).

We highlighted the quality of evidence in four major outcomes: risk of AMS, risk of HAPE, risk of HACE and risk of adverse events.

We used the five GRADE criteria (study limitations; consistency of effect; imprecision; indirectness; and publication bias) to assess the quality of evidence relating to the studies that contributed data to the analyses for each of these four outcomes. When we identified an issue that we considered to be serious in each of the five GRADE criteria, we downgraded the quality of evidence by one level; and when we considered the issue to be very serious, we downgraded the quality of evidence by two levels (Guyatt 2011a; Guyatt 2011b; Guyatt 2011c; Guyatt 2011d; Guyatt 2011e; Guyatt 2011f; Guyatt 2011g; Guyatt 2011h). Whenever we decided to downgrade the quality of evidence from the default high quality, we justified our decisions and described the level of downgrade in the footnotes of the table. We developed the 'Summary of findings' table using a web-based version of the GRADEpro software (www.guidelinedevelopment.org), according to the methods and recommendations described in Section 8.5 and Chapter 12 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011).

RESULTS

Description of studies

See Characteristics of included studies and Characteristics of excluded studies.

Results of the search

Our searches in May 2017 identified a total of 1332 references. After reviewing the references by title and abstract, we selected 174 of the citations to review as full texts (see Figure 1). After reading the articles we included in this review eight studies (334 participants), distributed in nine references. We excluded 38 studies (distributed in 40 references), and classified a further 12 studies as ongoing, and another 12 studies as awaiting assessment (most of them due to the full text not yet being available). A further 101 studies were not included in the present review: this is because they are due to be included in the other two reviews in this series of three reviews.
Figure 1. Study flow diagram.

1682 records identified through database searching plus other

1332 records after duplicates removed

1332 records screened

1156 records excluded

38 studies (40 records) excluded:
* 28 records are not focused on prevention of HAI
* 8 for HAI treatment.
* 2 for other reasons.
12 records considered as "awaiting".
12 records ongoing.

174 records assessed for eligibility

8 studies (9 records) included in qualitative/quantitative synthesis
Included studies
We included eight studies (334 participants) in this review (Brookfield 1977; Dumont 2004; Jafarian 2007; Jafarian 2008; Jain 1986; Larsen 1986; SPACE 2011; Wohns 1986). The results of Dumont 2004 were published across two separate papers and so is included as a single study. Seven of the eight included studies were parallel trials, while the remaining trial was a cross-over trial (Larsen 1986). All trials were developed at high altitude.

Participants
The participants’ ages ranged between 15 and 65 years. Four of the studies included only men (50%; Jafarian 2008; Jain 1986; Larsen 1986; Wohns 1986). Only Dumont 2004 included people with a history of AMS (12.5%).

Setting
Two of the eight included studies were undertaken in the USA (25%; Jain 1986; Larsen 1986). The remaining six studies were carried out in Asia (37.5%; Jafarian 2008; SPACE 2011; Wohns 1986); and in Europe, Africa and South America (37.5%; Brookfield 1977; Dumont 2004; Jafarian 2007).

Administration of intervention to prevent HAI conditions
Three of the eight studies provided the intervention less than 24 hours prior to the ascent (37.5%; Jafarian 2007; Jafarian 2008; Wohns 1986), and four studies between one to three days prior (50%). One trial did not provide information about this issue (SPACE 2011). In 25% of the trials, the participants hiked (trekked) to endpoint altitude, and in the remaining studies they used a combination of means of transportation, including cars, trains, and cable cars (75%).

Altitude
All of the included studies reached a final altitude of between 3500 and 5895 metres above sea level. The difference between the endpoint and the baseline altitude ranged from 700 to 5120 metres. The most frequent durations for ascent were more than two days (four studies; Brookfield 1977; Dumont 2004; SPACE 2011; Wohns 1986). Two studies did not provide any information about these issues (25%; Jain 1986; Larsen 1986).

Scale used to assess AMS
The most commonly used scale used was the Lake Louise Score (50%; Dumont 2004; Jafarian 2007; Jafarian 2008; SPACE 2011), and the criterion to define AMS onset was a score of 3 points or more in two trials (Jafarian 2007; Jafarian 2008). In two studies, the criteria used to define the onset of AMS were unclear (25%; Jain 1986; Larsen 1986).

Funding
Only one of the included studies did not provide clear information about the source of funding (12.5%; Larsen 1986). None of the included studies bar Jafarian 2008 declared their possible conflicts of interests (87.5%). For further information refer to the table ‘Characteristics of included studies’

Excluded studies
We excluded 38 studies (40 references) from this series of three reviews (ACME-1 2006; Agostoni 2013; Bartisch 1993; Bartisch 1994; Bilo 2015; Bloch 2009; Broome 1994; Cain 1966; Debevec 2015; Dumont 1999; Forster 1982; Forward 1968; Fulco 2011; Gertsch 2002; Gray 1971; Harris 2003; Johnson 1988; Jonk 2007; Kotwal 2015; Lalande 2009; Lawley 2012; Levine 1989; Liu 2013; Maier 2012; McIntosh 1998; Purkayastha 1995; Reinhart 1994; Sandoval 2000; Scialzo 2013; Serra 2001; Siebenmann 2011; Singh 1969; Solis 1984; Xiangjun 2014; Wright 1988). Twenty-eight (73.6%) out of the 38 studies were excluded because they did not focus on HAI prevention: instead they reported physiological or laboratory results related to altitude ascent. In eight of the excluded studies, the authors reported results for the treatment of HAI conditions (21%). The remaining references were excluded for other reasons. For further information refer to the table Characteristics of excluded studies.

Studies awaiting classification
We classified 12 studies as awaiting assessment (Dugas 1995; Ellsworth 1987; Furian 2016; Hefri 2014; Kasic 1991; Lee 2011; Pun 2014; Roncin 1996; Swenson 1997; Utz 1970; Wang 1998; Xiangjun 2014). This is because we were unable to obtain the full texts from the authors, the Anaesthesia, Critical and Emergency Care Group (ACE) or the Iberoamerican Cochrane Centre. For further information refer to the table Characteristics of studies awaiting classification.
Ongoing studies
We considered an additional 12 studies as ongoing given that we were only able to find them cited in trial registers, but we considered that they could be due for publication shortly (ChiCTR-TRC-13003319; ChiCTR-TRC-13003590; NCT00886912; NCT01606527; NCT01682551; NCT01794078; NCT01993667; NCT02244437; NCT02450968; NCT02604173; NCT02811016; NCT02941510). For further information refer to the table Characteristics of ongoing studies.

Risk of bias in included studies
The risk of bias for the studies was assessed in seven categories. We provide a summary of our assessment of the methodological quality of included studies in Figure 2 and Figure 3.

Figure 2. Risk of bias graph: review authors’ judgements about each risk of bias item presented as percentages across all included studies.
Figure 3. Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

<table>
<thead>
<tr>
<th>Study</th>
<th>Random sequence generation (selection bias)</th>
<th>Allocation concealment (selection bias)</th>
<th>Blinding of participants and personnel (performance bias)</th>
<th>Blinding of outcome assessment (detection bias)</th>
<th>Incomplete outcome data (attrition bias)</th>
<th>Selective reporting (reporting bias)</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brookfield 1977</td>
<td>?</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dumont 2004</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Jafarian 2007</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Jafarian 2008</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Jain 1986</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>SPACE 2011</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Wohns 1986</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Allocation
In four studies, the authors reported a valid method of randomization ([Dumont 2004](#); [Jafarian 2007](#); [Jafarian 2008](#); [Jain 1986](#)), whereas this information was not clearly reported in the remaining studies (50%). Similarly, only two studies undertook and reported random allocation concealment ([Jafarian 2007](#); [Jafarian 2008](#)), and the information was absent in the remaining included studies (75%).

Blinding
Four studies reported adequate blinding of participants and personnel ([Brookfield 1977](#); [Dumont 2004](#); [Jafarian 2007](#); [Jafarian 2008](#)). In the remaining four studies, this domain was classified as unclear ([Jain 1986](#); [Larsen 1986](#); [SPACE 2011](#); [Wohns 1986](#)).

Regarding detection bias, the risk was considered as low in only three studies ([Dumont 2004](#); [Jafarian 2007](#); [Jafarian 2008](#)), whereas this information was considered as unclear in the remaining studies (62%). In three of the studies, the risk of bias was classified as low for both blindings ([Dumont 2004](#); [Jafarian 2007](#); [Jafarian 2008](#)).

Incomplete outcome data
Significant numbers of participants were lost or excluded from the final analysis of one study ([Brookfield 1977](#)). Two further studies presented unclear data ([Jafarian 2008](#); [Jain 1986](#)). In the remaining five studies, the risk of bias was classified as low (62.5%).

Selective reporting
Reporting adverse events associated with the different types of interventions is fundamental for the complete assessment of their usefulness in clinical practice. We found that all studies bar one did not report other adverse events associated with the classes of drugs commonly used for prevention of AMS (such as paraesthesia: [Brookfield 1977](#); [Dumont 2004](#); [Jain 1986](#); [Larsen 1986](#); [SPACE 2011](#); [Wohns 1986](#)); and [Jafarian 2008](#) reported unclear information for side effects.

Other potential sources of bias
We found an unclear source of bias in [Larsen 1986](#), because it is unclear whether previous events of HAI (specifically in phase 1) affects the probability of new events in the second phase of cross-over trials. We identified no additional sources of risk in the remaining studies.

Effects of interventions
See: **Summary of findings for the main comparison** Sumatriptan compared with placebo for preventing high altitude illness; **Summary of findings 2** Magnesium citrate compared with placebo for preventing high altitude illness; **Summary of findings 3** Spirololactone compared with placebo for preventing high altitude illness; **Summary of findings 4** Acetazolamide compared with spironolactone for preventing high altitude illness.

See Summary of findings for the main comparison; Summary of findings 2; Summary of findings 3; Summary of findings 4

Comparison 1: selective 5-hydroxytryptamine(1) receptor agonist: sumatriptan versus placebo
For this comparison, we analysed the information from one study ([Jafarian 2007](#)), with a total of 102 participants. The dosage used was 50 mg/day, and the study was developed in Iran, reaching a maximum altitude of 3500 metres.

Primary outcome 1: risk of acute mountain sickness (AMS)
[Jafarian 2007](#) provided information about the risk of AMS, with a total of 30 events (9/51 (17.6%) in the sumatriptan group versus 21/51 (41.1%) taking the placebo). AMS was defined as a Lake Louise AMS score of 3 or higher, with headache. The estimated RR for AMS, comparing sumatriptan versus placebo, was 0.43 (95% CI 0.21 to 0.84; 102 participants). We downgraded the quality of evidence from high to low due to imprecision issues (See **Summary of findings for the main comparison**).

Secondary outcome 1: risk of high altitude pulmonary oedema (HAPE)
We found no information about this outcome in the included study.

Secondary outcome 2: risk of high altitude cerebral oedema (HACE)
We found no information about this outcome in the included study.

Secondary outcome 3: risk of adverse events
We found no information about this outcome in the included study.
Secondary outcome 4: differences in HAI/AMS scores

Jafarian 2007 reported a lower Lake Louise AMS score in the sumatriptan group (51 participants; median = 3, IQR = 3) than placebo group (51 participants; median = 1.5, IQR = 2.75; P = 0.005). We were unable to transform this information to means and standard deviations.

Comparison 2: N-methyl-D-aspartate (NMDA) antagonist: magnesium citrate versus placebo

For this comparison we analysed the information from one study (Dumont 2004), with a total of 70 participants. The dose used was 1200 mg/day, and the study was planned in Switzerland, and undertaken in Italy, reaching a maximum altitude of 4559 metres. There were 20 participants with a history of AMS (10 in each group).

Primary outcome 1: risk of acute mountain sickness (AMS)

Dumont 2004 provided information about the risk of acute mountain sickness and found a total of 23 events (12/35 (34.2%) of those taking magnesium versus 11/35 (31.4%) of those taking placebo). AMS was defined as a Lake Louise AMS score greater than 6 with headache score greater than 2 and gastrointestinal/ataxia score greater than 2. The estimated RR for AMS, comparing magnesium citrate tablets versus placebo, was 1.09 (95% CI 0.55 to 2.13; 70 participants). We downgraded the quality of evidence from high to low due to imprecision issues (See Summary of findings 2).

Secondary outcome 1: risk of high altitude pulmonary oedema (HAPE)

We found no information about this outcome in the included study.

Secondary outcome 2: risk of high altitude cerebral oedema (HACE)

We found no information about this outcome in the included study.

Secondary outcome 3: risk of adverse events

Dumont 2004 provided information about the risk of loose stools and they found a total of 17 events (13/35 (37.1%) in those taking magnesium versus 4/35 (11.4%) of those taking placebo). The estimated RR for this adverse event, comparing magnesium citrate versus placebo, was 3.25 (95% CI 1.17 to 8.99; 70 participants). We downgraded the quality of evidence from high to moderate due to imprecision (see Summary of findings 2).

Secondary outcome 4: differences in HAI/AMS scores

We found no information about this outcome in the included study.

Comparison 3: endothelin-1 antagonist - bosentan versus placebo

We did not find trials which evaluate the role of bosentan in prevention of HAI conditions.

Comparison 4: Anticonvulsant drugs - phenytoin versus placebo

For this comparison, we identified one study with a total of 21 participants (Wohns 1986). However this study did not provide information about any of the outcomes selected for this review. This study was planned in the USA and undertaken in Nepal, reaching a maximum altitude of 5120 metres. All the participants in this study were climbers.

Comparison 5: Spironolactone versus placebo

For this comparison, we analysed the information from two studies with a total of 205 participants (Brookfield 1977; SPACE 2011). Investigators administered 75 mg/day in Brookfield 1977 and 100 mg/day in SPACE 2011. The studies were planned in the USA and Nepal and undertaken in Tanzania and Nepal, reaching a maximum altitude of 5898 and 5000 metres respectively. We also included one cross-over study (Larsen 1986), with a total of 12 participants. However, this study did not provide information about any of the outcomes assessed in this review and did not contribute to any analysis.

Primary outcome 1: risk of acute mountain sickness (AMS)

Two studies provided information about the risk of acute mountain sickness (Brookfield 1977; SPACE 2011). A pooled analysis had an I² of 72% and this could not be explained by any of our planned subgroup analyses. We have therefore not pooled the results of these trials. Brookfield 1977 defined AMS as a clinical score (not defined) equal to or greater than 2 and reported AMS in 2/6 (33%) of participants taking spironolactone versus 5/6 (83%) of those taking placebo, RR 0.40 (95% CI 0.12 to 1.31). SPACE 2011 defined AMS as a Lake Louise AMS score of headache and one additional symptom and reported AMS in 27/114 (23.6%) in those taking spironolactone versus 13/79 (16.5%) of those taking placebo, RR 1.44 (95% CI 0.79 to 2.01). These studies differ in terms of final altitude reached (5895 m versus 5000 m, respectively). We downgraded the quality of evidence from high to very low due to study limitations suggesting there may be a high risk of bias, inconsistency and imprecision with these two studies; (see Summary of findings 3). We were unable to perform TSA due to high heterogeneity for this comparison.
Secondary outcome 1: risk of high altitude pulmonary oedema (HAPE)

SPACE 2011 researchers assessed the risk of altitude pulmonary oedema, but they did not find events to report (Table 1). We downgraded the quality of evidence from high to low due to unclear risk of selection, performance and detection bias, as well as imprecision issues (See Summary of findings 3).

Secondary outcome 2: risk of high altitude cerebral oedema (HACE)

SPACE 2011 researchers assessed the risk of altitude cerebral oedema, but they did not find events to report (Table 1). We downgraded the quality of evidence from high to low due to unclear risk of selection, performance and detection bias, as well as imprecision issues (See Summary of findings 3).

Secondary outcome 3: risk of adverse events

We found no information about this outcome in the included study.

Secondary outcome 4: differences in HAI/AMS scores

We found no information about this outcome in the included study.

Comparison 6: other comparisons - acetazolamide versus spironolactone

Two studies reported this comparison, enrolling a total of 251 participants. They were conducted in India and Nepal, reaching a final altitude of 3000 and 5000 metres respectively (Jain 1986; SPACE 2011). No primary or secondary outcomes were reported by Jain 1986, so only SPACE 2011 could contribute data to this review. This trial administered 500 mg of acetazolamide/day and 100 mg of spironolactone/day.

Primary outcome 1: risk of acute mountain sickness (AMS)

SPACE 2011 researchers found 37 events of acute mountain sickness for this comparison (10/118 (8.4%) of those taking acetazolamide versus 27/114 (23.6%) taking spironolactone. The estimated RR for AMS, comparing acetazolamide versus spironolactone, was 0.36 (95% CI 0.18 to 0.70); 232 participants). We downgraded the quality of evidence from high to low due to unclear risk of selection, performance and detection bias, as well as imprecision (See Summary of findings 4).

Secondary outcome 1: risk of high altitude pulmonary oedema (HAPE)

The authors of SPACE 2011 did not find any events of high altitude pulmonary oedema. We downgraded the quality of evidence from high to low due to unclear risk of selection, performance and detection bias, as well as imprecision (See Summary of findings 4).

Secondary outcome 2: risk of high altitude cerebral oedema (HACE)

The authors of SPACE 2011 did not find any events of high altitude cerebral oedema. We downgraded the quality of evidence from high to low due to unclear risk of selection, performance and detection bias, as well as imprecision (See Summary of findings 4).

Secondary outcome 3: risk of adverse events

We found no information about this outcome in the included study.

Secondary outcome 4: differences in HAI/AMS scores

We found no information about this outcome in the included study.
Additional Summary of Findings

Magnesium citrate compared with placebo for preventing high altitude illness

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of Participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assumed risk</td>
<td>Corresponding risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>placebo</td>
<td>314 per 1000 (176 to 669)</td>
<td>RR 1.09 (0.55 to 2.13)</td>
<td>70 (1 study)</td>
<td>⊕⊕⊕⃝⃝</td>
<td>Low¹</td>
</tr>
<tr>
<td>Risk of acute mountain sickness</td>
<td>343 per 1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of high altitude pulmonary oedema-not reported</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Risk of high altitude cerebral oedema-not reported</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Risk of adverse events: Loose stools</td>
<td>114 per 1000 (134 to 1000)</td>
<td>RR 3.25 (1.17 to 8.99)</td>
<td>70 (1 study)</td>
<td>⊕⊕⊕⃝⃝</td>
<td>Low¹</td>
</tr>
</tbody>
</table>

* The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio
GRADE Working Group grades of evidence

High quality: further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: we are very uncertain about the estimate.

Imprecision downgraded by 2 levels due to insufficient sample size to determine whether there are differences or no differences between these 2 groups.
Spironolactone compared with placebo for preventing high altitude illness

Patient or population: participants at risk of high altitude illness
Setting: High altitude (Tanzania)
Intervention: spironolactone
Comparison: placebo

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of Participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assumed risk</td>
<td>Corresponding risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>Spironolactone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of acute mountain sickness</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>205</td>
<td>@@@@ Very low<sup>1</sup></td>
<td>RR ranged from 0.40 to 1.44</td>
</tr>
<tr>
<td>Risk of high altitude pulmonary oedema</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>@@@@ low<sup>2</sup></td>
<td>No HAPE events recorded</td>
</tr>
<tr>
<td>Risk of High altitude cerebral oedema</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>@@@@ low<sup>2</sup></td>
<td>No HACE events recorded</td>
</tr>
<tr>
<td>Risk of adverse events - not reported</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td></td>
<td>Not reported</td>
</tr>
</tbody>
</table>

* The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% CI) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio

GRADE Working Group grades of evidence
High quality: further research is very unlikely to change our confidence in the estimate of effect.
Moderate quality: further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.
Low quality: further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
Very low quality: we are very uncertain about the estimate.

¹ Quality of evidence downgraded from high to very low due to a high risk of bias, imprecision and inconsistency.
Quality of evidence downgraded from high to low due to unclear risk of selection, performance and detection bias, as well as imprecision issues.
<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of Participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assumed risk</td>
<td>Corresponding risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spironolactone</td>
<td>Acetazolamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of acute mountain</td>
<td>237 per 1000</td>
<td>85 per 1000 (43 to 168)</td>
<td>RR 0.36 (0.18 to 0.70)</td>
<td>232 (1 study)</td>
<td>Low†,2</td>
</tr>
<tr>
<td>sickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of high altitude</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>232 (1 study)</td>
<td>Low†,2</td>
</tr>
<tr>
<td>pulmonary oedema</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of high altitude</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>232 (1 study)</td>
<td>Low†,2</td>
</tr>
<tr>
<td>cerebral oedema</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of adverse events</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td>232 (1 study)</td>
<td>Low†,2</td>
</tr>
<tr>
<td>- not reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: we are very uncertain about the estimate.

† Risk of bias downgraded by 1 level due to unclear selection, performance and detection bias.
Imprecision downgraded by 1 level due to insufficient sample size to determine whether there are differences or no between these 2 groups.
DISCUSSION

Summary of main results

Evidence from eight studies and 334 participants showed the scarcity of evidence regarding the following five less commonly used classes of drugs for prevention of HAI conditions: selective 5-hydroxytryptamine(1) receptor agonists; N-methyl-D-aspartate (NMDA) antagonist; endothelin-1 antagonist; anticonvulsant drugs; and spironolactone. For most of the assessed comparisons, we only found evidence from a single study. Four studies were at a low risk of bias for randomization, two for allocation concealment. Four studies were at a low risk of bias for blinding of participants and personnel. Three studies were considered at a low risk of bias for blinding of outcome assessors. Most studies were considered at high risk of selective reporting bias. We report results for the four main comparisons as follows.

Sumatriptan versus placebo (1 parallel study; 102 participants)

Data on sumatriptan showed a reduction of the risk of AMS when compared with a placebo (risk ratio (RR) 0.43 (95% CI 0.21 to 0.84); 1 study; 102 participants; low quality of evidence). This study did not report events of HAPE, HACE or adverse events related to administrations of sumatriptan.

Magnesium citrate versus placebo (1 parallel study; 70 participants)

The estimated RR for AMS, comparing magnesium citrate tablets versus placebo, was 1.09 (95% CI 0.55 to 2.13; 1 study; 70 participants; low quality of evidence). In addition, the estimated RR for loose stools was 3.25 (95% CI 1.17 to 8.99; 1 study; 70 participants; low quality of evidence). The included study did not report events of HAPE or HACE.

Spironolactone versus placebo (2 parallel studies; 205 participants)

Pooled estimation of RR for AMS was not performed due to considerable heterogeneity between included studies ($I^2 = 72\%$). RR from individual studies was 0.40 (95% CI 0.12 to 1.31) and 1.44 (95% CI 0.79 to 2.01; very low quality of evidence). No events of HAPE or HACE were reported. Adverse events were not evaluated.

Acetazolamide versus spironolactone (1 parallel study; 232 participants)

Data on acetazolamide compared with spironolactone showed a reduction of the risk of AMS with the administration of acetazolamide (RR 0.36; 95% CI = 0.18 to 0.70; 232 participants; low quality of evidence). No events of HAPE or HACE were reported. Adverse events were not evaluated.

In addition, we did not find any studies comparing endothelin-1 antagonists (such as bosentan) with a placebo. We also did not find evidence of benefits and harms of anticonvulsant drugs (such as phenytoin), in terms of primary and secondary outcomes selected for our review.

Overall completeness and applicability of evidence

We identified a limited number of studies addressing the effectiveness and safety of the less common pharmacological interventions for the prevention of HAI, with almost all the evidence being specifically about AMS. We included eight studies in this review (334 participants). Few of the included studies reported on our primary and secondary outcomes. The findings of this review should be interpreted carefully in the light of the methodological limitations of the included clinical trials, the lack of information on aspects related to these interventions, as well as the different criteria and scales used (see also Nieto 2017 for more information regarding scales used). It also highlights the lack of reports of adverse events.

Quality of the evidence

We used the GRADE system to assess the quality of the body of evidence associated with primary and secondary outcomes. (See Summary of findings for the main comparison, Summary of findings 2, Summary of findings 3 and Summary of findings 4 for complete assessments and the rationale for ratings.) Risk of bias and imprecision were the GRADE considerations most affected in the assessment of the quality of the evidence in our review, especially for risk of AMS in all comparisons (downgraded two levels in most of the cases). Inconsistency was only detected for the risk of AMS in spironolactone versus placebo (downgraded three levels). Indirectness and publication bias were not detected for the gathered evidence.

Potential biases in the review process

In all cases, we followed the methodology for systematic reviews outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). However, we had to make extensive modifications to the published protocol (Martí-Carvajal 2012), due to the need to update the methods to the current Methodological Expectations of Cochrane Intervention Reviews (MECIR) (Higgins 2016). For instance, the MECIR guidelines were published after publication of this review’s protocol (Martí-Carvajal 2012), and some sections required major post-hoc modifications. At that point we had some knowledge about the results of our search,
and this could have introduced bias in these modifications. All modifications were approved by the Cochrane Anaesthesia, Critical and Emergency Care Group (ACE) editors in collaboration with clinical and statistical experts, and we believe the risk of bias was reduced as far as possible. In addition, one major change was the decision to split the review into three parts, considering the numerous interventions assessed for HAI prevention. This decision was guided by the search results submitted in a first draft of the review, and because the ACE editors considered that the readability of the information could be adversely affected without this division. We believe the subgroups help understanding of the heterogeneity and variability of interventions in this field, as well as allow the presentation of critical information in a clearer manner. We also suggest all these interventions should be analysed in a network meta-analysis, in order to determine which interventions are more effective in avoiding the onset of new cases of this condition. Please see Differences between protocol and review for the full list of the modifications undertaken for this series of reviews about the prevention of HAI.

Twelve potentially eligible studies did not provide enough information to enable us to classify them as included or excluded. This was because they were published only as conference proceedings, or because we did not have access to the full texts when we were completing this review. We also considered 12 additional studies as ongoing because they were published only as protocols. An additional potential bias in our review was the difficulty we had in contacting trial authors to request additional information. We were unable to undertake this task due to, in most cases, no clear contact information being supplied in the publication. In addition, at least half of the included studies were published more than two decades ago. Trial authors might have been a potential source of information to document the rate of adverse events related to assessed interventions. We found that most of the studies (more than 87%) did not report adverse events associated with the classes of drugs commonly used for the prevention of AMS. This constitutes a lack of information about the safety profile of the drugs in question. In addition, we did not expect to encounter any unit of analysis issues as we did not expect to find cross-over studies. However, we identified in this review one cross-over study (12 cross-over in total for this series of reviews) in our search strategies. In order to avoid bias in the development of our review, we analysed those studies separately.

Agreements and disagreements with other studies or reviews

Most of the published reviews recommend slow ascent, and acetazolamide or dexamethasone as alternatives for the prevention of this condition (Flaherty 2016; Kayser 2012; Khodaei 2016; Low 2012; Ritchie 2012; SeuPaul 2012; Zafren 2014). CATMAT 2007 proposed a role for spironolactone (25 mg orally four times a day) in prevention of HAI, but accepted this recommendation needed confirmation with further evidence. Likewise, Marmura and colleagues showed that gabapentin and sumatriptan could have a clearer role in treatment of HAI instead of prevention (Marmura 2015). We did not find any reviews about other options such as bosentan, phenytoin or magnesium, and these pharmacological interventions are not recommended in current clinical practice guidelines for the prevention of this condition. Recently, Davis and colleagues discussed current advances in the prevention and treatment of HAI (Davis 2017). The authors stated that prophylaxis of HAI has as a main goal optimal acclimatization to prevent these conditions, so pharmacological interventions such as acetazolamide remain as the major strategy in AMS and HAPE prevention. In addition, nifedipine and phosphodiesterase inhibitors are also proposed as useful agents in prevention of HAPE. However, none of the drugs included in this review is proposed as having a role in the prevention of HAI conditions (Davis 2017). Likewise, Luks and colleagues stated that pharmacological interventions can be considered for individuals at high risk of developing HAI conditions (Luks 2017). Acetazolamide and dexamethasone have been considered valid alternatives in prevention of AMS; and nifedipine, tadalafil and salmeterol are options considered for HAPE prevention in individuals with a history of this condition (Luks 2017).

A U T H O R S ’ C O N C L U S I O N S

Implications for practice

The assessment of five of the less commonly used classes of drugs suggests there is little evidence available concerning these interventions in prevention of HAI conditions. Clinical benefits and harms related to these potential interventions remain unclear. Overall, the evidence is of limited practical significance in the clinical field.

Implications for research

There is a lack of large and multi-centre studies of most of the pharmacological agents evaluated in this review. For most of the comparisons evaluated, small sample sizes and lack of reporting of adverse events affect the quality of results. Further studies should also evaluate combinations of pharmacological strategies to prevent HAI. Design of future trials might be improved by the following suggestions.

1. Refining the operative definition of HAI conditions by selecting a unified scale and threshold.
2. Improving the reporting of statistical data related to important outcomes in order to avoid missing data, and inclusion of information about elevation where HAI occurs.
3. Adding adverse events as an important endpoint in assessment of these preventive strategies.

4. Comparing potential pharmacological agents against interventions of well-known effectiveness (such as acetazolamide, an intervention assessed in the first part of this series of reviews).

Finally, we suggest performing a network meta-analysis of all interventions (pharmacological and non-pharmacological) used for high altitude illness prevention, in order to determine which interventions are more effective in avoiding the onset of new cases of this condition.

ACKNOWLEDGEMENTS

We would like to thank Mike Bennett (content editor), Jing Xie (statistical editor), Martin Burtscher (peer reviewer), and Matiram Pun (peer reviewer and consumer referee) for their help and editorial advice during the preparation of this systematic review.

REFERENCES

References to studies included in this review

Brookfield 1977 [published data only]

Dumont 2004 [published data only]

Jafarian 2007 [published data only]

Jafarian 2008 [published data only]

Jain 1986 [published data only]

Larsen 1986 [published data only]

SPACE 2011 [published data only]

Wohns 1986 [published data only]

References to studies excluded from this review

ACME-1 2006 [published data only]

Agostoni 2013 [published data only]

Bartsch 1993 [published data only]

Bartsch 1994 [published data only]

Bilo 2015 [published data only]
Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs (Review)
Mairer 2012 *(published data only)*

McIntosh 1986 *(published data only)*

Purkayastha 1995 *(published data only)*

Reinhardt 1994 *(published data only)*

Sandoval 2000 *(published data only)*

Scalzo 2015 *(published data only)*

Serra 2001 *(published data only)*

Siebenmann 2011 *(published data only)*

Singh 1969 *(published data only)*

Soltis 1984 *(published data only)*

Suh 2015 *(published data only)*

Teppema 2007 *(published data only)*

Vuyk 2006 *(published data only)*

White 1984 *(published data only)*

Wright 1988 *(published data only)*

References to studies awaiting assessment

Dugas 1995 *(published data only)*

Ellsworth 1987 *(published data only)*

Furian 2016 *(published data only)*

Hefti 2014 *(published data only)*
Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs (Review)

Kasic 1991 {published data only}

Lee 2011 {published data only}

Pun 2014 {published data only}

Roncin 1996 {published data only}

Swenson 1997 {published data only}

Utz 1970 {published data only}

Wang 1998 {published data only}

Xiangjun 2014 {published data only}

References to ongoing studies

ChiCTR-TRC-13003590 {published data only}
ChiCTR-TRC-13003590. The meaning of intravenous iron supplementation In acute mountain sickness: a randomized, double-blinded, placebo-controlled trials. apps.who.int/trialsearch/Trial2.aspx?TrialID=ChiCTR-TRC-13003590 (first received 23 June 2013).

NCT00886912 {published data only}
NCT00886912. Training in hypoxia to prevent acute mountain sickness [Prevention of acute mountain sickness (AMS) by intermittent hypoxic training]. apps.who.int/trialsearch/Trial2.aspx?TrialID=NCT00886912 (first received 21 April 2009).

NCT01606527 {published data only}
NCT01606527. NSAID for prevention of altitude sickness [Prospective, double–blind, randomized, placebo–controlled trial of ibuprofen versus placebo for prevention of neurologic forms of altitude sickness]. apps.who.int/trialsearch/Trial2.aspx?TrialID=NCT01606527 (first received 13 April 2012).

NCT01682551 {published data only}

NCT01794078 {published data only}
NCT01794078. A Study to test the safety of combined dosing with aminophylline and ambrisentan in exercising healthy human volunteers at simulated high altitude GQ02 [A randomized, 4–sequence, double–blind study to test the safety of combined dosing with aminophylline and ambrisentan in exercising healthy human volunteers at simulated high altitude]. apps.who.int/trialsearch/Trial2.aspx?TrialID=NCT01794078 (first received 10 February 2013).

NCT01993667 {published data only}

NCT02244437 {published data only}

NCT02450968 {published data only}

NCT02604173 {published data only}
controlled trial of altitude sickness prevention and efficacy of comparative treatments]. apps.who.int/trialsearch/Trial2.aspx?TrialID=NCT02604173 (first received 6 November 2015).

NCT02811016 [published data only]
NCT02811016. Inhaled budesonide and acute mountain sickness [Effect of inhaled budesonide on the incidence and severity of acute mountain sickness at 4559 m]. apps.who.int/trialsearch/Trial2.aspx?TrialID=NCT02811016 (first received 14 June 2016).

NCT02941510 [published data only]
NCT02941510. Inhaled Budesonide for Altitude Illness Prevention [Inhaled Budesonide for Altitude Illness Prevention]. apps.who.int/trialsearch/Trial2.aspx?TrialID=NCT02941510 (first received 19 October 2016).

Additional references

Adams 2004

Anonymous 1892

Bailey 2009

Basnyat 2003

Bevacqua 2013

Brok 2009

Burse 1982

Bärtsch 1992

Bärtsch 2004

Bärtsch 2007

CATMAT 2007

Cheng 2006

Currie 1976

DailyMed

Davis 2017

Dehnert 2010

Dumont 2000

Elbourne 2002

Elphick 2004

Flaherty 2016
Flaherty GT, Kennedy KM. Preparing patients for travel to high altitude: advice on travel health and chemoprophylaxis.
Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs (Review)

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Lan 1983

Leissner 2009

Low 2012

Luks 2008a
Luks AM. Do we have a “best practice” for treating high altitude pulmonary edema?. *High Altitude Medicine & Biology* 2008;9(2):111–4. [PUBMED: 18578641]

Luks 2008b

Luks 2010

Luks 2014

Luks 2017

Maggiorini 1998

Maggiorini 2010

Maneuf 2006

Marmura 2015

Mathew 2001

Meyers 1980

Modesti 2006

Monge 1942

Murdock 1995

Naeije 2010

Nieto 2017

Palmer 2010

Paralikar 2010

Pasha 2010

Review Manager 2014 [Computer program]
Spironolactone in acute mountain sickness 1977

Ritchie 2012

Rodríguez de Romo 2002

Schoene RB Unraveling the mechanism of high altitude pulmonary edema. *Chest* 2002;12471292.

Schoonen 2004

Schoonen 2009

Seupaul 2012

Snell 1977

Spironolactone in acute mountain sickness 1977

Stedman 2011

Stream 2008

Thorlund 2009

Turnbull 1980

Wan 2014

Wetterslev 2008

Wetterslev 2017

Wilson 2009

Windsor 2009

Wright 2008

Yanagisawa 1988

Zafren 2014

References to other published versions of this review

Martí-Carvajal 2012

* Indicates the major publication for the study
Characteristics of included studies [ordered by study ID]

Brookfield 1977

| Methods | Design: parallel - 2 arms
Country: Tanzania
Multisite: no
International: no
Treatment duration: 6 days
Follow-up: unclear
Rate of ascent (m/h): unclear
Final altitude reached: 5895 m
AMS scale: unclear (arbitrary symptom score)
Random unit: participants
Analysis unit: groups |
|---|---|
| Participants | 1. 15 participants enrolled (all unacclimatized Europeans living at sea level apart from 1 member normally residing at 2000 m)
Participants randomized to:
• spironolactone group (unclear number)
• placebo group (unclear number)
2. 3 participants were excluded. They dropped out at an altitude of less than 3700 m without evidence of AMS (unclear which group)
12 participants included in analysis
• Spironolactone group (n = 6; 50%).
• Placebo (n = 6; 50%)
3. Main characteristics of participants:
• Age (range): 12 to 35 years
• Number of women/men: 10 men and 2 women |
| Interventions | 1. Spironolactone group (intervention): 25 mg tablet, 1 tablet 3 times a day for 6 days
2. Placebo group (control): no details were provided
3. Co-interventions: not stated |
| Outcomes | 1. AMS presence: total score of 2 or more in an arbitrary scale of symptoms, including: 1 point for headache, nausea and insomnia; 2 points each for a headache not relieved by 0.6 mg of aspirin, or vomiting; 3 points each for shortness of breath at rest, severe and inappropriate lassitude, and ataxia
2. Assessment of optic fundi
3. Urine output
Outcomes were not classified as primary or secondary. |
| Notes | 1. Trial Registration: not stated.
2. Funder: Pharmacy division, University of Dar es Salaam
3. Role of funder: preparation of tablets
4. A priori sample size estimation: no
5. Conducted: not stated |
Brookfield 1977 (Continued)

<table>
<thead>
<tr>
<th>Risk of bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information to score this item as low or high risk of bias Quote: “These were given to all members in a random double-blind basis, neither subjects nor investigators knowing what tablets each person was receiving” (page 689)</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information to score this item as low or high risk of bias Quote: “These were given to all members in a random double-blind basis, neither subjects nor investigators knowing what tablets each person was receiving” (page 689)</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Quote: “These were given to all members in a random double-blind basis, neither subjects nor investigators knowing what tablets each person was receiving” (page 689)</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information to score this item as low or high risk of bias</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>High risk</td>
<td>20% of participants (3) were lost at follow-up</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>High risk</td>
<td>Outcomes important to participants, such as adverse events, were not reported. Full information about number of participants at the beginning of the study is not provided (per-protocol analysis)</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>No additional biases were identified</td>
</tr>
</tbody>
</table>
Methods

<table>
<thead>
<tr>
<th>Design</th>
<th>Parallel design (2 arms), 2 stages: prevention trial and treatment trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Italian Alps (Capanna Regina Margherita)</td>
</tr>
<tr>
<td>Multisite</td>
<td>No</td>
</tr>
<tr>
<td>International</td>
<td>No</td>
</tr>
<tr>
<td>Treatment duration</td>
<td>5 days</td>
</tr>
<tr>
<td>Follow-up</td>
<td>7 days</td>
</tr>
<tr>
<td>Rate of ascent (m/h)</td>
<td>140 m/h</td>
</tr>
<tr>
<td>Final altitude reached</td>
<td>4559 m</td>
</tr>
<tr>
<td>AMS scale</td>
<td>Lake Louise Consensus Symptom Score</td>
</tr>
</tbody>
</table>

Participants

1. 61 healthy subjects started the prevention trial
2. Participants randomized to:
 - magnesium citrate 30 (49.2%)
 - placebo 31 (50.8%)
3. Participants lost at follow-up: 1 subject (placebo) fell ill before starting the trial and did not turn up; he was not considered for any analysis. 5 subjects (2 in the placebo group and 3 in the magnesium group) had to return from the Capanna Mantova (3420 m) in the morning of day 2 due to bad weather conditions. 1 subject in the magnesium group abandoned due to physical exhaustion on day 2 before reaching the Capanna Regina Margherita. She was evacuated by helicopter and accompanied by 2 colleagues (1 placebo and 1 in the magnesium group). None of these 8 subjects had experienced symptoms of AMS and they were considered for the adverse-effect analysis only
4. Main characteristics of participants (in general):
 - 29 females, 32 males
 - age mean: 35.3 ± 8.5 yr
 - history of AMS: 20/61 (10 in each group)

Interventions

- 400 mg magnesium/8 hourly/5 days orally
- Placebo/8 hourly/5 days

Outcomes

- **Primary outcome**
 - Number of prevention successes
- **Secondary outcomes**
 - Number of prevention failures
 - Delay until prevention failure
 - Maximum Lake Louise Scores at any time during the study period

Notes

1. Trial Registration: not stated
2. Funder: Geneva University Hospitals
3. Role of funder: financial support
4. A priori sample size estimation: yes, stated on page 271
5. Conducted: not stated
6. Declared conflicts of interest: not stated
7. No contact information supplied in publication; unable to contact authors

Risk of bias

<table>
<thead>
<tr>
<th>38</th>
<th>Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs (Review)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.</td>
</tr>
</tbody>
</table>
Dumont 2004 (Continued)

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>A table of random numbers was used for randomization purposes (page 270)</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information to score this item as low or high risk of bias</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Blinding was maintained by giving medication in the same fashion. Quote: “Tablets of identical size, colour and taste were taken every 8 hours (...) subjects and investigators were blinded to the assigned treatment” (page 270)</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Quote: “subjects and investigators were blinded to the assigned treatment” (page 270)</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>Percentage of participants lost at follow-up: 12.85%</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>High risk</td>
<td>Outcomes important to participants, such as adverse events, were not reported</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>No other biases were identified</td>
</tr>
</tbody>
</table>

Jafarian 2007

Methods
- Design: parallel (2 arms)
- Country: Iran
- Multisite: no
- International: no
- Treatment duration: single dose
- Follow-up: 48 hours
- Rate of ascent (m/h): 1600 to 3500 within 45 to 60 minutes
- Final altitude reached: 3500 metres
- AMS scale: AMS Lake Louise score
- Random unit: participants
- Analysis unit: participants

Participants
- 1. 102 volunteers enrolled (18 to 60 years of age, unacclimatized, and stayed at an altitude of 1200 m to 1500 m for at least 2 weeks before ascent) and randomized
- 75 ineligible individuals due to:
 - < 18 or > 60 years (34)
 - serious hypertension or cardiovascular disease (2)
 - refused to participate (39)
- 2. Participants were randomized to:
• sumatriptan = 51 (50 %)
• placebo = 51 (50 %)
3. 5 participants excluded (after randomization) due to private reasons (3 in intervention group and 2 in placebo group)
4. Main characteristics of participants:
 • Age
 - mean (IQR): intervention group = 25 (13.2) years; placebo group = 24 (7.5) years
 - Female sex (%): intervention group = 27.5; placebo group = 29.4
 - Percentage of cigarette smokers: intervention group = 54.6; placebo group = 52.9
 - Percentage of participants with chronic headache: intervention group = 7.8; placebo group = 5.9

Interventions
1. Sumatriptan group (intervention): 50 mg sumatriptan succinate capsule single dose
2. Placebo group (control): 50 mg identical monohydrate lactose capsule single dose

Outcomes
Primary outcome
1. Number of participants remaining free of AMS during 24 hours
Secondary outcomes
1. Severity of AMS and headache
2. Adverse events

Notes
1. Trial Registration: Controlled clinical trial ISRCTN 87201238
2. Funder: Imam Neurology Research Center
3. Role of funder: not stated
4. A priori sample size estimation: yes
5. Conducted: 1 October to 17 November 2006
6. Declared conflicts of interest: not provided
7. No contact information supplied in publication.

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Quote: “Participants were randomly assigned using block randomisation (blocks of 2) to receive either 50mg sumatriptan succinate capsule or identical monohydrate lactose capsule as placebo (Darou Darman Pars Pharmaceuticals, Tehran, Iran) in a non stratified randomisation method.” (page 274)</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Quote: “the medications were in opaque boxes labelled with randomisation codes that were not disclosed to clinicians and assessor.” (page 274)</td>
</tr>
</tbody>
</table>
Jafarian 2007

(Continued)

<table>
<thead>
<tr>
<th>Bias Type</th>
<th>Risk Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding of participants and personnel (performance bias) All outcomes</td>
<td>Low risk</td>
<td>Quote: “Only the pharmacist who provided the drugs knew the details of computer-generated randomisation codes, and all patients, clinicians, and assessor were unaware of medication type” (page 274)</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>Low risk</td>
<td>Quote: “Only the pharmacist who provided the drugs knew the details of computer-generated randomisation codes, and all patients, clinicians, and assessor were unaware of medication type” (page 274)</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias) All outcomes</td>
<td>Low risk</td>
<td>5 participants (5/102 = 4.9%) were lost at follow-up</td>
</tr>
<tr>
<td>Selective reporting (reporting bias) Low risk</td>
<td></td>
<td>No selective reporting identified</td>
</tr>
<tr>
<td>Other bias Low risk</td>
<td></td>
<td>No other biases were identified</td>
</tr>
</tbody>
</table>

Jafarian 2008

Methods
- **Design:** parallel (2 arms)
- **Country:** Iran
- **Multisite:** no
- **International:** no
- **Treatment duration:** single dose
- **Follow-up:** 24 hours
- **Rate of ascent (m/h):** 1600 to 3500 within 45 to 60 minutes
- **Final altitude reached:** 3500 metres
- **AMS scale:** AMS Lake Louise score
- **Random unit:** participants
- **Analysis unit:** participants

Participants
- 1. 204 volunteers enrolled (15 to 65 years of age, unacclimatized, and stayed at an altitude of 1200 m to 1500 m for at least 2 weeks before ascent) and randomized
- Exclusion criteria: history of cardiac or cerebral or pulmonary disease, severely impaired kidney or liver function, use of analgesics or anticonvulsants or tricyclic antidepressants within the previous 48 hours, current history of alcohol or drug abuse, known allergy to gabapentin, pregnancy, and presence of any of the AMS symptoms before the trial
- 2. Participants were randomized to:
 - gabapentin = 102 (50%)
 - placebo = 102 (50 %)
- 3. No participants were lost at follow-up
- 4. Main characteristics of participants
 - Age
 - mean (SD): intervention group = 31.6 y (12); placebo group = 31.3 y (11.4)
 - Female sex (%): intervention group = 38.2; placebo group = 36.3
 - Percentage of cigarette smokers: intervention group = 24.5; placebo group = 19.6
Interventions

- Percentage of migraine history: intervention group = 10.8; placebo group = 11.8

| Interventions | 1. Gabapentin group (intervention): 600 mg gabapentin lactose capsule single dose
2. Placebo group (control): 600 mg identical monohydrate lactose capsule single dose |

Outcomes

- Primary outcome
 1. HAH risk and intensity
 2. Duration of moderate/severe headache-free phases after the beginning of the trial

- Secondary outcomes
 1. Risk and severity of AMS
 2. Adverse events

Notes

- Trial Registration: ISRCTN26123577
- Funder: Imam Neurology Research Center. Darou Darman Pars Pharmaceuticals
- Role of funder: Provision of gabapentin and placebo
- A priori sample size estimation: no
- Conducted: February to April 2007
- Declared conflicts of interest: yes
- No contact information supplied in publication.

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Quote: "Subjects who were found to be eligible at screening were randomised in a 1:1 ratio (in blocks of six) to one of two treatment groups using a computer generated randomisation schedule" (page 321)</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Quote: "Medications were presented in identical opaque boxes that were labelled with their randomisation numbers; these numbers were not disclosed to clinicians and the assessor. Only the pharmacist who provided the drugs knew the details of the codes" (page 321)</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias) All outcomes</td>
<td>Low risk</td>
<td>Quote: "Medications were presented in identical opaque boxes that were labelled with their randomisation numbers; these numbers were not disclosed to clinicians and the assessor. Only the pharmacist who provided the drugs knew the details of the codes" (page 321)</td>
</tr>
</tbody>
</table>
Jafarian 2008

Continued

<table>
<thead>
<tr>
<th>Bias</th>
<th>Risk</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Quote: “Medications were presented in identical opaque boxes that were labelled with their randomisation numbers; these numbers were not disclosed to clinicians and the assessor. Only the pharmacist who provided the drugs knew the details of the codes” (page 321)</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>No participants were lost at follow-up</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>Adverse events are not reported in a full way</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>No other biases were identified</td>
</tr>
</tbody>
</table>

Jain 1986

| Methods | Design: randomized blind trials
Country: Delhi, India
Multisite: no
International: no
Treatment duration: Four days
Follow-up: 4 days
Rate of ascent (m/h): simulate 4570 m in 1 day
Final altitude reached: 4570 m
AMS scale: General High Altitude Questionnaire (GHAQ)
Random unit: random number table and in a blind fashion
Analysis unit: unclear |
|----------|---|
| Participants | 1. 29 participants enrolled (healthy Indian soldiers aged between 22 and 26 years having no previous experience of stay at high altitude)
Participants randomized to:
• acetazolamide (10)
• spironolactone (9)
• placebo (10)
2. No randomized participants were excluded
3. No participants were lost at follow-up
4. Main characteristics of participants: not reported |
| Interventions | Acetazolamide tablets 250 mg every 6 hours beginning a day before the actual ascent to high altitude
Spironolactone tablets 25 mg every 6 hours beginning a day before the actual ascent to high altitude
Placebo tablet every 6 hours beginning a day before the actual ascent to high altitude |
| Outcomes | Symptoms of AMS
Blood gas measurement
Outcomes were not classified as primary or secondary |
Jain 1986 (Continued)

<table>
<thead>
<tr>
<th>Notes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Trial Registration: not stated</td>
<td></td>
</tr>
<tr>
<td>2. Funder: not stated</td>
<td></td>
</tr>
<tr>
<td>3. Role of funder: not stated</td>
<td></td>
</tr>
<tr>
<td>4. A priori sample size estimation: no</td>
<td></td>
</tr>
<tr>
<td>5. Conducted: 1984</td>
<td></td>
</tr>
<tr>
<td>6. Declared conflicts of interest: not reported</td>
<td></td>
</tr>
<tr>
<td>7. No contact information supplied in publication; unable to contact authors</td>
<td></td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Quote: “The subjects were initially tested at an altitude of 200 m and then divided into three groups by using a random number table” (page 294)</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information to score this item as low or high risk of bias</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Unclear risk</td>
<td>Insufficient information to score this item as low or high risk of bias</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information to score this item as low or high risk of bias</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>No participants were reported as lost at follow-up</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>High risk</td>
<td>Outcomes important to participants, such as adverse events, were not reported</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>No other biases were identified</td>
</tr>
</tbody>
</table>
Larsen 1986

Methods

- **Design:** cross-over design (2 arms)
- **Country:** USA
- **Multisite:** no
- **International:** no
- **Treatment duration:** 4 days
- **Follow-up:** 3 weeks
- **Final altitude reached:** 4570 m simulated in a hypobaric chamber
- **AMS scale:** Environmental Syndrome questionnaire
- **Random unit:** participants
- **Analysis unit:** participants

Participants

1. 12 male participants enrolled (ages 19 to 25 years, lowland residents who had not been exposed to high altitude for at least 6 months)
 - **Exclusion criteria:** unclear
2. 3 participants were excluded after randomization: 1 participant excluded for chest pain, 1 for personal reasons, 1 for viral syndrome; 9 completed the cross-over phase
3. No participants were lost at follow-up
4. **Main characteristics of participants:** not reported

Interventions

- Spironolactone 25 mg 48 hours prior to and 46 hours during exposure
- Placebo

Outcomes

- Presence of AMS
- Psychological assessment
- Biochemical and physiological measurements

Outcomes were not classified as primary or secondary

Notes

1. **Trial Registration:** not stated
2. **Funder:** not stated
3. **Role of funder:** not stated
4. **A priori sample size estimation:** no
5. **Conducted:** not stated
6. **Declared conflicts of interest:** not reported
7. No contact information supplied in publication; unable to contact authors.

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
</table>
| Random sequence generation (selection bias) | Unclear risk | Insufficient information to score this item as low or high risk of bias
| | | Quote: “Treatment order was randomised between subjects and balanced between trials” (page 544) |
| Allocation concealment (selection bias) | Unclear risk | Insufficient information to score this item as low or high risk of bias |
Larsen 1986 (Continued)

<table>
<thead>
<tr>
<th>Blinding of participants and personnel (performance bias)</th>
<th>Unclear risk</th>
<th>Insufficient information to score this item as low or high risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>All outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blinding of outcome assessment (detection bias)</th>
<th>Unclear risk</th>
<th>Insufficient information to score this item as low or high risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>All outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incomplete outcome data (attrition bias)</th>
<th>Low risk</th>
<th>No participants were reported as lost at follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>All outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selective reporting (reporting bias)</th>
<th>High risk</th>
<th>Outcomes important to participants, such as adverse events, were not reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>All outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other bias</th>
<th>Unclear risk</th>
<th>It is unclear if previous events of HAI (specifically in phase 1) affects the probability of new events in second phase of crossover trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>All outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPACE 2011

Methods
- Design: parallel (3 arms)
- Country: Nepal
- Multisite: no
- International: no
- Treatment duration: 30 h to 4 days
- Follow-up: unclear
- Rate of ascent (m/h): unclear
- Final altitude reached: 5000 m
- AMS scale: Lake Louise score
- Random unit: participants
- Analysis unit: groups

Participants
- 1,311 participants enrolled (healthy male and female subjects between 18 and 65 years without AMS or any concurrent illness and not taking acetazolamide)
- Exclusion criteria:
 - Mild AMS (more than 1 mild symptom on the LLQ)
 - Significantly depressed oxygen saturation (< 75%)
 - Pregnancy or those who could not exclude the possibility of being pregnant or have missed menses by over 7 days
 - History of allergy to acetazolamide or other sulfa drugs
 - Individuals who were on ACE inhibitors (e.g. enalapril) or other diuretics (e.g. amiloride or triamterene)
 - Individuals who had spent 24 hours at an altitude of 4500 m (14,000 ft) within the last 9 days
 - Individuals known to have taken any of the following in the prior 2 days: acetazolamide (Diamox), steroids
 - (dexamethasone, prednisone), theophylline, or diuretics (furosemide)
Individuals failing to provide informed consent at the study enrolment site at Pheriche

Participants randomized to:
- 114 spironolactone (36.6%)
- 118 acetazolamide (37.9%)
- 79 placebo (25.4%)

2. 25 participants randomized (8%, uniformly distributed) were excluded from analysis because they broke the protocol:
- Acetazolamide group (8, 7.7%)
- Spironolactone group (10, 9.8%)
- Placebo group (7, 9.8%).

3. Participants lost at follow-up:
- Acetazolamide group (15, 12%)
- Spironolactone group (12, 10.5%)
- Placebo group (8, 10%).

4. Main characteristics of participants:
- Age (mean, SD):
 - Acetazolamide group: 37 ± 12.2
 - Spironolactone group: 37.7 ± 12
 - Placebo group: 39.4 ± 12.1
- Number of men, %:
 - Acetazolamide group: 59 (62.1%) men
 - Spironolactone group: 67 (62.8%) men
 - Placebo group: 46 (71.9%) men

Interventions

1. acetazolamide group: acetazolamide 250 mg twice daily orally for 4 days
2. spironolactone group: Spironolactone 50 mg twice daily orally for 4 days
3. placebo group: placebo twice daily orally for 4 days

Outcomes

Primary outcome
- Risk and severity of AMS

Secondary outcomes
- Risk of headache together with severity AMS
- SpO

Notes

1. Trial Registration: (ISRCTN77054547)
2. Funder: Wellcome Trust, UK.
3. Role of funder: financial support
4. A priori sample size estimation: no
5. Conducted: 6 October and 24 November 2007
6. Declared conflicts of interest: no
7. No contact information supplied in publication; unable to contact authors.

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs (Review)
Random sequence generation (selection bias)	Unclear risk	Insufficient information to score this item as low or high risk of bias. Quote: “randomisation of spironolactone, acetazolamide, and placebo was conducted by Deurali-Janta Pharmaceuticals Pvt. Ltd” (page 17)
Allocation concealment (selection bias)	Unclear risk	Quote: “randomisation of spironolactone, acetazolamide, and placebo was conducted by Deurali-Janta Pharmaceuticals Pvt. Ltd” (page 17) Quote: “Three sealed master lists of the randomisation code were held by the manufacturer, an independent clinician at the Nepal International Clinic in Katmandu, and an independent clinician at the aid post in Pheriche (study enrolment location).” Page 17
Blinding of participants and personnel (performance bias) All outcomes	Unclear risk	Insufficient information to score this item as low or high risk of bias
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Insufficient information to score this item as low or high risk of bias
Incomplete outcome data (attrition bias) All outcomes	Low risk	Around 10% to 12% of participants were lost at follow-up
Selective reporting (reporting bias)	High risk	Outcomes important to participants, such as adverse events, were not reported
Other bias	Low risk	No other biases were identified
Methods

- **Design**: parallel (2 arms)
- **Country**: China
- **Multisite**: no
- **International**: no
- **Treatment duration**: 7 to 10 days
- **Follow-up**: unclear
- **Rate of ascent (m/h)**: unclear
- **Final altitude reached**: 5120 m
- **AMS scale**: "A modified general high altitude questionnaire was utilized to delineate and quantitative symptoms of acute mountain sickness. Twenty-two symptoms were listed as “yes”/“no” questions and rated on scales from 0, none; 1 to 3, slight; 4 to 6, moderate; and 7 to 9, extreme”
- **Random unit**: participants
- **Analysis unit**: groups

Participants

1. **21 participants enrolled** (male climbers who normally reside at or near sea level. All were in excellent health and none ascended to altitudes over 14,500 feet for at least 1 month before participating in the study.)
2. **21 participants randomized to**:
 - phenytoin group (n = 9)
 - placebo group (n = 12)
3. **No randomized patients were excluded from analysis**
4. **Participants lost at follow-up**: none stated
5. **Main characteristics of participants**:
 - **Age (mean/SD)**:
 - phenytoin group (35.5 ± 9.9)
 - placebo group (40 ± 11.4)
 - **Number of men**:
 - phenytoin group (n = 9)
 - placebo group (n = 12)
 - **History of AMS**:
 - phenytoin group (n = 5/9) 55%
 - placebo group (n = 9/12) 75%

Interventions

- **Phenytoin group (intervention)**: no clear description provided
- **Placebo group (control)**: no clear description provided

Outcomes

- **Modified general high altitude questionnaire score**
- **Risk of symptoms of AMS as moderate or severe headache and/or nausea**

Outcomes were not classified as primary or secondary

Notes

1. **Trial Registration**: not stated
2. **Funder**: United States Army Grant DAMD 17-84-G-4023
3. **Role of funder**: not stated
4. **A priori sample size estimation**: no
5. **Conducted**: not stated
6. **Declared conflicts of interest**: not reported
7. **No contact information supplied in publication; unable to contact authors.**
Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information to score this item as low or high risk of bias</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information to score this item as low or high risk of bias</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Unclear risk</td>
<td>Insufficient information to score this item as low or high risk of bias</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information to score this item as low or high risk of bias</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>No participants were lost at follow-up</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>High risk</td>
<td>Outcomes important to participants, such as adverse events, were not reported</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>No other biases were identified</td>
</tr>
</tbody>
</table>

ACTH = Adrenocorticotropic hormone; AMS = Acute Mountain Sickness; AMS-C = Acute Mountain Sickness score- cerebral subscale; AMS-R = Acute Mountain Sickness score- respiratory subscale; BP = Blood pressure; ESQ scores = Environmental Symptom Questionnaire; FVC= Forced vital capacity; g/dL = grams/deciliter; GHAQ = Generalized High Altitude Questionnaire; HACE = High altitude cerebral edema; HAH = High altitude headache; HAI = High altitude illness; HAPE = High altitude pulmonary oedema; ITT = Intention to treat; IV = Intravenous; kg = Kilograms; LLS = Lake Louise Scoring System; MAP = Mean artery pressure; mg = milligrams; NSAIDs = Nonsteroidal anti-inflammatory drugs; PASP = Pulmonary Artery Systolic Pressure; PEF = Peak expiratory flow; PH = degree of acidity or alkalinity of a solution; RCT = randomized controlled trial; SD = Standard deviation; SE = Standard error; SEM = standard error of the mean; VAS = Visual analogue scale.

Characteristics of excluded studies [ordered by study ID]

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACME-1 2006</td>
<td>The study is focused on treatment of high altitude illness</td>
</tr>
<tr>
<td>Agostoni 2013</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Reference</td>
<td>Focus on Prevention of High Altitude Illness</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Bartsch 1993</td>
<td>The study is focused on treatment of high altitude illness</td>
</tr>
<tr>
<td>Bartsch 1994</td>
<td>The study is focused on treatment of high altitude illness</td>
</tr>
<tr>
<td>Bilo 2015</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Bloch 2009</td>
<td>Non-randomized clinical trial</td>
</tr>
<tr>
<td>Broome 1994</td>
<td>The study is focused on treatment of high altitude illness</td>
</tr>
<tr>
<td>Cain 1966</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Debevec 2015</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Dumont 1999</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Forster 1982</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Forward 1968</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Fulco 2011</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Gertsch 2002</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Gray 1971</td>
<td>The study is focused on treatment of high altitude illness</td>
</tr>
<tr>
<td>Harris 2003</td>
<td>The study is focused on treatment of high altitude illness</td>
</tr>
<tr>
<td>Johnson 1988</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Jonk 2007</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Korwal 2015</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Lalande 2009</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Lawley 2012</td>
<td>The study is focused on treatment of high altitude illness</td>
</tr>
<tr>
<td>Levine 1989</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Liu 2013</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Mairer 2012</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>McIntosh 1986</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
</tbody>
</table>
(Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purkayastha 1995</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Reinhart 1994</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Sandoval 2000</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Scalzo 2015</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Serra 2001</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Siebenmann 2011</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Singh 1969</td>
<td>The study is focused on treatment of high altitude illness</td>
</tr>
<tr>
<td>Solís 1984</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Suh 2015</td>
<td>Non-randomized clinical trial</td>
</tr>
<tr>
<td>Teppema 2007</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Vuyk 2006</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>White 1984</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
<tr>
<td>Wright 1988</td>
<td>This study is not focused on prevention of high altitude illness</td>
</tr>
</tbody>
</table>

Characteristics of studies awaiting assessment [ordered by study ID]

Dugas 1995

<table>
<thead>
<tr>
<th>Method</th>
<th>Double-blind randomized study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>20 healthy volunteers received 5 mg of isradipine (n = 6) or placebo (n = 6) for 8 days. After 5 days of treatment in normoxia, the subjects were rapidly transported to an altitude of 4350 m</td>
</tr>
<tr>
<td>Interventions</td>
<td>Isradipine (calcium channel blocker) and placebo</td>
</tr>
<tr>
<td>Outcomes</td>
<td>AMS symptom score, haemodynamic parameters and renal function</td>
</tr>
<tr>
<td>Notes</td>
<td>Full text not available (January 2016)</td>
</tr>
</tbody>
</table>
Ellsworth 1987

<table>
<thead>
<tr>
<th>Methods</th>
<th>Double-blind randomized study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>47 climbers participated in this double-blind, randomized trial comparing acetazolamide 250 mg, dexamethasone 4 mg, and placebo every 8 hours as prophylaxis for acute mountain sickness during rapid, active ascent of Mount Rainier (elevation 4392 m). 42 subjects (89.4%) achieved the summit in an average of 34.5 hours after leaving sea level.</td>
</tr>
<tr>
<td>Interventions</td>
<td>Acetazolamide 250 mg, dexamethasone 4 mg, and placebo every 8 hours</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Acute mountain sickness, symptoms reported</td>
</tr>
<tr>
<td>Notes</td>
<td>Full text not available (January 2016)</td>
</tr>
</tbody>
</table>

Furian 2016

<table>
<thead>
<tr>
<th>Methods</th>
<th>Double-blind randomized, placebo-controlled trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>112 people with COPD were studied in Bishkek (760 m), Kyrgyz Republic; and after travelling within 6 hours to Tuja Ashu clinic (3200 m) stayed there for 3 days</td>
</tr>
<tr>
<td>Interventions</td>
<td>Participants received dexamethasone (2 × 4 mg/d) or placebo before ascent and during stay at 3200 m</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Cumulative risk of 1 of the following: AMS (AMSc environmental symptom cerebral score ≥ 0.7); severe hypoxaemia (SpO₂ < 75% for > 30 min); or discomfort requiring descent to low altitude</td>
</tr>
<tr>
<td>Notes</td>
<td>Full text not available (January 2017)</td>
</tr>
</tbody>
</table>

Hefti 2014

<table>
<thead>
<tr>
<th>Methods</th>
<th>Double-blind, placebo-controlled trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>29 participants were assigned into a treatment group (14) receiving 800 IU vitamin E, 1000 mg vitamin C, 200,000 IU vitamin A, and 600 mg N-acetylcysteine daily, starting 2 months prior to the expedition, and a placebo group (15)</td>
</tr>
<tr>
<td>Interventions</td>
<td>Vitamin group and placebo</td>
</tr>
<tr>
<td>Outcomes</td>
<td>AMS scores, Levels of endothelial micro particles</td>
</tr>
<tr>
<td>Notes</td>
<td>Full text not available (January 2016)</td>
</tr>
</tbody>
</table>
Kasic 1991

Methods: Randomized study

Participants: 24 people who presented with acute mountain sickness

Interventions: A simulated descent of 1432 m (4600 ft) was attained by placing the participants in a fabric hypobaric chamber and pressurizing the chamber to 120 mm Hg above ambient pressure. Participants were randomly assigned to either the hypobaric treatment or treatment with 4 litres of oxygen given by facemask; both treatments lasted for 2 hours

Outcomes: Mean arterial oxygen saturation (SaO₂), symptoms of acute mountain sickness

Notes: Full text not available (January 2016)

Lee 2011

Methods: Randomized trial

Participants: Nineteen adolescents aged 13 to 18 years attempting an ascent of Mt. Kalapatar (5500 m)

Interventions: Acetazolamide, metazolamide

Outcomes: Risk of AMS, oxygen saturation and pulse rate

Notes: Full text not available (January 2017)

Pun 2014

Methods: Prospective double-blind placebo controlled randomized trial

Participants: 358 pilgrims were recruited at Dhunche (1950 m) and followed up at Chandanbari (3350 m) and up to the sacred Lake Gosaikunda. Most of these pilgrims ascended from Dhunche to the lake in 2 to 3 days

Interventions: Low-dose acetazolamide (125 mg) and placebo

Outcomes: Lake Louise score (LLS) for AMS measurement, arterial oxygen saturation (SpO₂) and heart rate (HR)

Notes: Full text not available (January 2016)

Roncin 1996

Methods: Randomized trial

Participants: 44 subjects were enrolled to participate in a study of the preventive effect of ginkgo biloba extract (EGb 761) on acute mountain sickness (AMS) and vasomotor changes of the extremities during a Himalayan expedition

Interventions: Ginkgo biloba extract (EGb 761) 160 mg and placebo

Outcomes: Environmental Symptom Questionnaire (ESQ) score and the cold gradient measured by photoplethysmograph
Roncin 1996

(Continued)

| Notes | Full text not available (January 2016) |

Swenson 1997

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomized trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>19 healthy volunteers were assessed, who ingested in randomized order both a high carbohydrate (68% CHO) or normal carbohydrate (45% CHO) diet for 4 days. On the 4th day, subjects were exposed to 8 h of 10% normobaric oxygen</td>
</tr>
<tr>
<td>Interventions</td>
<td>High carbohydrate (68% CHO) or normal carbohydrate (45% CHO) diet for 4 days</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Lake Louise Consensus Questionnaire, interleukins 1 beta, 6 and 8 (IL-1 beta, IL-6, IL-8) and tumour necrosis factor alpha (TNF-alpha)</td>
</tr>
<tr>
<td>Notes</td>
<td>Full text not available (January 2016)</td>
</tr>
</tbody>
</table>

Utz 1970

<table>
<thead>
<tr>
<th>Methods</th>
<th>None known</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>None known</td>
</tr>
<tr>
<td>Interventions</td>
<td>None known</td>
</tr>
<tr>
<td>Outcomes</td>
<td>None known</td>
</tr>
<tr>
<td>Notes</td>
<td>Full text not available (January 2016)</td>
</tr>
</tbody>
</table>

Wang 1998

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomized trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>65 men</td>
</tr>
<tr>
<td>Interventions</td>
<td>Conventional therapy group received oxygen, intravenous furosemide, aminophylline and dexamethasone; nifedipine group received oral nifedipine (10 mg, 3 × daily) in addition to conventional therapy; and participants in the nitric oxide group received nitric oxide (10 ppm) inhalation for 30 min, in addition to oral nifedipine</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Pulmonary rales on auscultation and shadows on chest radiograph</td>
</tr>
<tr>
<td>Notes</td>
<td>Full text not available (January 2016)</td>
</tr>
</tbody>
</table>
Xiangjun 2014

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomized trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>80 healthy young male plain residents (17 to 33 years old)</td>
</tr>
<tr>
<td>Interventions</td>
<td>Inhalation of budesonide (200 μg, twice daily), procaterol tablet (25 μg, twice daily), inhalation of budesonide/fomoterol (160 μg/4.5 μg, twice daily) or placebo (1 tablet, twice daily)</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Lake Louis AMS questionnaire, blood pressure, heart rate, and oxygen saturation</td>
</tr>
<tr>
<td>Notes</td>
<td>Full text not available (January 2017)</td>
</tr>
</tbody>
</table>

AMS: Acute Mountain Sickness; CHO: Carbohydrate; EGb 761: Extract of Ginkgo biloba 761; ESQ: Environmental Symptom Questionnaire; HR: Heart rate; IL: Interleukin; LLS: Lake Louise score; mg: milligrams; min: minutes; ppm: parts per million; TNF: Tumour necrosis factor.

Characteristics of ongoing studies [ordered by study ID]

ChiCTR-TRC-13003319

<table>
<thead>
<tr>
<th>Trial name or title</th>
<th>Oral zolpidem for improving sleep and then prevention of acute mountain sickness: a single centre, randomised, double-blind, controlled, prospective trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Intervention</td>
</tr>
<tr>
<td>Participants</td>
<td>Inclusion criteria</td>
</tr>
<tr>
<td></td>
<td>1. Aged between 18 and 35 years, including 18 and 35 years</td>
</tr>
<tr>
<td></td>
<td>2. People acutely ascending to high altitude. The gender ratio depends on actual situation</td>
</tr>
<tr>
<td></td>
<td>3. There is no history of plateau for a long time exposure</td>
</tr>
<tr>
<td></td>
<td>4. Before assessment, all subjects must be voluntary and sign a written informed consent</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria</td>
</tr>
<tr>
<td></td>
<td>1. Recent history of taking sleeping pills</td>
</tr>
<tr>
<td></td>
<td>2. Engaged in specialized sports training</td>
</tr>
<tr>
<td></td>
<td>3. Subjects cannot take the drugs in our trial because of allergic history or other reasons</td>
</tr>
<tr>
<td></td>
<td>4. Subjects with bad compliance</td>
</tr>
<tr>
<td></td>
<td>5. Subjects with serious illnesses, e.g. sleep apnoea</td>
</tr>
<tr>
<td></td>
<td>6. Recent history of upper respiratory tract infection</td>
</tr>
<tr>
<td></td>
<td>7. The driver</td>
</tr>
<tr>
<td></td>
<td>8. Subjects with psychological or neurological disorder, and other conditions which are not appropriate for our trial</td>
</tr>
<tr>
<td></td>
<td>Age minimum: 18 years old</td>
</tr>
<tr>
<td></td>
<td>Age maximum: 35 years old</td>
</tr>
<tr>
<td></td>
<td>Gender: both</td>
</tr>
<tr>
<td>Interventions</td>
<td>Experimental: oral zolpidem (10 mg, daily, oral)</td>
</tr>
<tr>
<td></td>
<td>Control: oral placebo, the same dosage as oral zolpidem</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Lake Louise Score</td>
</tr>
<tr>
<td>Trial name or title</td>
<td>The meaning of intravenous iron supplementation in acute mountain sickness: a randomised, double-blinded, placebo-controlled trial</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Methods</td>
<td>Interventional</td>
</tr>
</tbody>
</table>
| Participants | Inclusion criteria
1. Healthy subjects ready to travel from Beijing to Tibet by air
2. Subjects knowing the aim of the study and giving informed consent
Exclusion criteria
1. Subject not finishing the procedure
2. Subject with coronary heart disease and uncontrolled hypertension and other severe diseases
3. Subject with anaemia especially iron deficiency anaemia
Age minimum: 18 years old
Age maximum: 65 years old
Gender: both |
| Interventions | Intervention group: intravenous iron 200 mg
Control: placebo |
| Outcomes | Serum iron; Lake Louise AMS score |
| Starting date | 30 July 2013 |
| Contact information | Ren Xuewen |
| Notes | Recruiting |

<table>
<thead>
<tr>
<th>Trial name or title</th>
<th>Prevention of acute mountain sickness by intermittent hypoxic training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Interventional</td>
</tr>
</tbody>
</table>
| Participants | Inclusion criteria
1. Healthy
2. Non-smoker
3. Endurance training minimum 2 times per week
Exclusion criteria
1. Any diseases |

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
NCT00886912 (Continued)

Interventions	Other: hypoxia
	Other: normoxia
Outcomes	Risk of acute mountain sickness (time frame: after 20 hours at 4559 m)
	Severity of acute mountain sickness (time frame: after 20 hours at 4559 m)
Starting date	June 2008
Contact information	Kai Schommer, MD
Notes	Recruiting

NCT01606527

| Trial name or title | Prospective, double-blind, randomized, placebo-controlled trial of ibuprofen versus placebo for prevention of neurologic forms of altitude sickness
| Methods | Prospective, randomized, double-blind, placebo-controlled clinical trial evaluating ibuprofen and placebo for the prevention of neurologic forms of altitude illness (including high altitude headache (HAH), acute mountain sickness (AMS), high altitude cerebral edema (HACE) and high altitude anxiety)
| Participants | The study will take place in the spring and summer of 2012 at the Marine Corps Mountain Warfare Training Center in the Eastern Sierras near Bridgeport, California. US Marines from near sea level will participate in battalion-level training exercises at between 8500 and 11,500 feet, where some altitude illness is expected
| Interventions | Ibuprofen 600 mg orally 3 times daily
| Outcomes | 1. Change in the risk of AMS as measured on the Lake Louise AMS Questionnaire across the study
| | 2. Change in high altitude headache measured by the Visual Analog Scale (VAS) across the study
| | 3. Change in cognitive performance as measured by King-Devick test across the study
| | 4. Change in the presence of anxiety and somatic symptoms using the BSI-12 screening tool across the study
| | 5. Change in the oxygen concentration using Pulse Oximetry across the study
| | 6. Change in hydration status as measured by urine specific gravity across the study
| | 7. Change in HAH risk and severity as measured on the Lake Louise AMS Questionnaire across the study
| | 8. Change in cognitive performance as measured by the Quickstick across the study
| | 9. Change in the presence of anxiety and somatic symptoms using the GAD-2 screening tool across the study
| | 10. Risk of severe AMS as measured by a score of 6 or greater on the Lake Louise AMS Questionnaire
| Starting date | July 2012
| Contact information | Jeffrey Gertsch MD, Naval Health Research Center

Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs (Review)

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
NCT01606527 (Continued)

| Notes | The recruitment status of this study is unknown. The completion date has passed and the status has not been verified in more than 2 years |

NCT01682551

| Trial name or title | Evaluation of the prevention and treatment effects of Chinese medicine on high altitude illness |
| Methods | Intervventional |
| Participants | Inclusion criteria
1. Healthy adults
Exclusion criteria
1. Chronic disease: cardiovascular disease, psychological disease, anaemia, migraine
2. Long-term use of the following materials: Chinese herbs, steroid, antibiotics
3. Altitude acclimation: have been to mountain over 2000 metres in the past 1 month
4. Pregnancy
Age minimum: 20 years
Age maximum: 70 years
Gender: both |
| Interventions | Drug: acetazolamide
Drug: Chinese medicine |
| Outcomes | Risk of acute mountain sickness will be measured by the Lake Louise Self Report (Lake Louise Score = 4 with headache) (time frame: the Lake Louise Score will be measured at noon of the second day after hiking to determine the onset of AMS)
Arterial oxygen saturation (time frame: arterial oxygen saturation will be measured before and after the hike)
Blood pressure (time frame: blood pressure will be measured before and after the hike)
Heart rate (time frame: heart rate will be measured before and after the hike) |
| Starting date | September 2012 |
| Contact information | Not stated |
| Notes | Not yet recruiting |

NCT01794078

| Trial name or title | A randomised, 4-sequence, double-blind study to test the safety of combined dosing with aminophylline and ambrisentan in exercising healthy human volunteers at simulated high altitude |
| Methods | Intervventional |
| Participants | Inclusion criteria
1. Subjects must give written informed consent to participate in the study prior to undergoing any screening procedures. The subject will be given a signed and dated copy of the informed consent
2. Subjects must be healthy non-smoking (for 6 months or greater at commencement of Cycle 1) adult male |
and female volunteers; at least 18 through 50 years at screening, with a BMI of 18 kg/m² to 33 kg/m² and weighing at least 143 pounds (65 kg). Subjects’ health status will be determined by the medical history, physical examination, vital signs, ECG, blood chemistry, haematology, and urinalysis performed at screening.

3. Subjects must be willing to fast a minimum of 2 hours prior to screening.

4. Subjects must be willing to abstain from alcohol and xanthine-containing food and beverages from 48 hours before check-in for each study day.

5. Women who are of non-childbearing potential, must be:
 a) Surgically sterile (removal of both ovaries and/or uterus at least 12 months prior to dosing) and with an FSH level at screening of = 40 m IU/mL.
 b) Naturally postmenopausal (spontaneous cessation of menses) for at least 24 consecutive months prior to dosing on Day 1, and with an FSH level at screening of 40 m IU/mL.

6. Women of child-bearing potential must have a negative serum or urine pregnancy test at screening, during the study, and must agree to avoid pregnancy during study and for 3 months after the last dose of study drug. Pregnancy is tested at screening, during check-in of each testing cycle, during the follow-up visit, and at any given point if deemed necessary to the physician or designate. During treatment, women of child-bearing potential must use 2 acceptable methods of contraception at the same time unless the subject has had a documented tubal sterilization or chooses to use a Copper T 380A IUD or LNG 20 IUS, in which case no additional contraception is required. Abstinence is not considered a form of contraception. Medically acceptable contraceptives include: (1) documented surgical sterilization (such as a hysterectomy), (2) barrier methods (such as a condom or diaphragm) used with a spermicide, or (3) an intrauterine device (IUD) or intrauterine system (IUS).

7. Male subjects must agree to take all necessary measures to avoid causing pregnancy in their sexual partners during the study and for 3 months after the last dose of study drug. Medically acceptable contraceptives include: (1) surgical sterilization (such as a vasectomy), or (2) a condom used with a spermicidal. Contraceptive measures such as Plan B (TM), sold for emergency use after unprotected sex, are not acceptable methods for routine use.

8. Subjects must agree not to donate blood, platelets, or any other blood components 30 days, or plasma 90 days, prior to consenting and for 1 month after the last dose.

9. Male subjects must agree not to donate sperm during the study and for 12 weeks after the last dose.

Exclusion criteria

1. Subjects with laboratory results outside the normal range, if considered clinically significant by the physician or delegate. In addition, subjects must have a haemoglobin concentration of = 12.0 g/dL.

2. A mental capacity that is limited to the extent that the subject cannot provide legal consent or understand information regarding the side effects of the study drug.

3. Currently abusing drugs or alcohol or with a history of drug or alcohol abuse within the past 2 years.

4. Unwillingness or lack of ability to comply with the protocol, or to cooperate fully with the physician and site personnel.

5. Use of any of the following:
 a) Any concomitant medication including oral contraceptive hormones. Subjects who have received any prescribed or non-prescribed (over-the-counter (OTC)) systemic medication, topical medications, or herbal supplements within 14 days from Day 1. St. John’s Wort (hypericin) must not have been taken for at least 30 days prior to Cycle 1, Day 1.
 b) Any drugs, foods or substances known to be strong inhibitors or strong inducers of CYP enzymes (also known as cytochrome P450 enzymes).

6. Clinically significant ECG abnormality in the opinion of the physician or delegate.

7. Vital signs or clinically significant laboratory values at the screening visit that in the opinion of the physician or delegate would make the subject an inappropriate candidate for the study.

8. A VO_{max} value of less than 42 mL/kg/minute, as determined during exercise testing at screening. This
value represents an educated estimate and may be changed, to include new information, at the discretion of the physician.

9. A history of, or otherwise indicated predisposition for, claustrophobia, i.e. the fear of closed, narrow spaces (because of the limited size of the high altitude chamber).

10. A history of "undeserved" altitude sickness, i.e. altitude sickness at only moderate altitude. This would consist of altitude-related headaches, dizziness, or nausea during plane rides, or when travelling to moderately elevated locations of less than 9000 ft.

11. Has taken any other investigational drug during the 30 days prior to the screening visit or is currently participating in another investigational drug clinical trial.

12. Made any significant donation or have had a significant loss of blood within 30 days, or donated plasma within 90 days of consenting.

13. Receipt of a transfusion or any blood products within 90 days prior to commencement of Cycle 1.

14. History or manifestation of clinically significant neurological, gastrointestinal, renal, hepatic, cardiovascular, psychological, pulmonary, metabolic, endocrine, haematologic or other medical disorders. For the purpose of the study, individual fitness and health are more important than family history of disease burden as a criterion for participation. For example, an individual may have significant family history of cardiovascular disease; however, the individual subject's active lifestyle makes a manifestation of such disease at young ages unlikely. To account for such expected variation, the ultimate decision whether to exclude or include an individual based on family history or manifestation of disease will be made by the physician. The physician may choose to use physiological assessments, such as e.g. ECG, blood pressure, and VO₂ max fitness level as an aid for decision making.

15. Any condition that might interfere.

Age minimum: 18 years old.

Age maximum: 50 years old.

Gender: both.

Interventions

| Drug: ambrisentan 5 mg |
| Drug: aminophylline 400 mg |

Outcomes

The safety of combined or single-dose aminophylline and ambrisentan at simulated altitude in exercising human subjects (time frame: safety endpoints will be measured during simulated high altitude (Cycle 2) at least 22 days post screening).

The safety of combined or single-dose aminophylline and ambrisentan at simulated high altitude in resting human subjects (time frame: safety endpoints will be measured during an episode of simulated high altitude (Cycle 1), at least 7 days post screening).

Starting date

September 2013.

Contact information

Claude A Piantadosi, MD.

Notes

Active, not recruiting.
NCT01993667

Trial name or title
Acetazolamide for the prevention of high altitude illness: a comparison of dosing

Methods
Interventional

Participants
Inclusion criteria
1. 18 years or older
2. English or Indian speaking
3. Mountaineers or trekkers who plan to climb Mt. McKinley or trek to Base Camp on Mt. Everest
Exclusion criteria
1. Low sodium and/potassium blood serum levels
2. Kidney disease or dysfunction
3. Liver disease, dysfunction, or cirrhosis
4. Suprarenal gland failure or dysfunction
5. Hyperchloraemic acidoses
6. Angle-closure glaucoma
7. Taking high dose aspirin (over 325 mg/day)
8. Any reaction to sulfa drugs or acetazolamide
9. Pregnant or lactating women

Interventions
Drug: acetazolamide

Outcomes
Prevention of acute mountain sickness as measured by the Lake Louise Score (time frame: 1 year)
Side effect profile of acetazolamide (time frame: 1 year)

Starting date
March 2012

Contact information
Scott McIntosh, MD

Notes
Recruiting

NCT02244437

Trial name or title
Ibuprofen vs acetaminophen in the prevention of acute mountain sickness: A double blind, randomised controlled trial

Methods
Interventional

Participants
Inclusion criteria:
Healthy subjects between the ages of 18 and 65, male or female, non-Nepali, without AMS or any concurrent illness, and not already taking NSAIDs and acetazolamide or any other drug for the prevention of altitude illness
Exclusion criteria:
Individuals not meeting inclusion criteria, including mild AMS (more than 1 mild symptom on the Lake Louise Questionnaire) or significantly depressed oxygen saturation (< 75%); females known to be pregnant, cannot exclude the possibility of being pregnant, or have missed menses by over 7 days; individuals who have spent 24 hours at an altitude of 4500 metres/14,000 ft within the last 9 days; anyone known to have taken any of the following in the last 2 days: acetazolamide (Diamox®), steroids (dexamethasone, prednisone), theophylline, or diuretics (Lasix®); individuals who have a known intracranial space occupying lesion or a history of elevated intracranial pressure, (i.e. tumours, hydrocephalus, etc)
NCT02244437 (Continued)

| Interventions | Drug: acetaminophen
| | Drug: ibuprofen
| Outcomes | Diagnosis of Acute Mountain Sickness (AMS) (time frame: upon reaching 5000 m altitude (Lobuche) of Nepal Himalaya)
| | Blood Oxygen Saturation (SPO₂) (time frame: upon reaching 5000 m altitude (Lobuche) of Nepal Himalaya)
| | Heart Rate (HR) (time frame: upon reaching 5000 m altitude (Lobuche) of Nepal Himalaya)
| | High Altitude Headache (HAH) (time frame: upon reaching 5000 m altitude (Lobuche) of Nepal Himalaya)
| Starting date | October 2014
| Contact information | Nicholas C Kanaan, MD
| Notes | Active, not recruiting

NCT02450968

| Trial name or title | Dexamethasone for prophylaxis of acute mountain sickness in patients with chronic obstructive pulmonary disease travelling to altitude
| Methods | Interventional
| Participants | Inclusion criteria:
| | 1. Chronic obstructive pulmonary disease (COPD), GOLD criteria grade 1-2
| | 2. Living at low altitude (< 800m)
| | Exclusion criteria:
| | 1. COPD exacerbation
| | 2. severe COPD, GOLD grade 3 or 4
| | 3. Arterial oxygen saturation < 92% at low altitude (< 800 metres)
| | 4. Diabetes, uncontrolled cardiovascular disease such as systemic arterial hypertension, coronary artery disease; previous stroke; pneumothorax in the last 2 months
| | 5. Untreated or symptomatic peptic ulcer disease, glaucoma, obstructive sleep apnoea
| | 6. Internal, neurologic or psychiatric disease that interfere with protocol compliance including current heavy smoking (> 20 cigarettes per day)
| | 7. Pregnant or nursing mothers
| | Age minimum: 20 years old
| | Age maximum: 75 years old
| | Gender: both
| Interventions | Drug: dexamethasone
| | Drug: placebo
| Outcomes | Acute mountain sickness, cumulative risk (time frame: day 3 at 3200 m)
| | 6 minutes walk distance (time frame: day 2 at 3200 m)
| | Acute mountain sickness, severity (time frame: day 1, day 2, day 3 at 3200 m)

Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs (Review)
Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
NCT02450968 (Continued)

<table>
<thead>
<tr>
<th>Arterial blood gases (time frame: day 2 at 3200 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived exertion (time frame: day 2 at 3200 m)</td>
</tr>
</tbody>
</table>

Starting date
May 2015

Contact information
Talant M Sooronbaev, MD

Notes
Recruiting

NCT02604173

Trial name or title
A randomised controlled trial of altitude sickness prevention and efficacy of comparative treatments

Methods
Interventional

Participants
Inclusion criteria:
1. Male and Female
2. Sea level-dwelling hikers
3. Between ages 18 and 65

Exclusion criteria:
1. History of allergy to acetazolamide or budesonide (or other corticosteroids)
2. Taken NSAIDs, acetazolamide, or corticosteroids in the 1 week prior to study enrolment
3. Hazardous medical conditions which precludes the ability to moderately hike to high altitude including: sickle cell anaemia, asthma, or COPD, severe anaemia, or severe coronary arterial disease
4. Pregnancy or suspected pregnancy
5. Participants who are younger than 18 years of age and more than 65
6. Sleep above 4000 m elevation in the preceding 1 week
7. History of asthma or COPD
8. Current symptoms of an acute upper respiratory illness
9. Unable to complete a moderately strenuous hike at high altitude

Age minimum: 18 years old
Age maximum: 65 years old
Gender: both

Interventions
Drug: acetazolamide
Drug: budesonide
Drug: placebo

Outcomes
Oxygen saturation (time frame: 24 hours)
Pulmonary function testing - FEV1 (time frame: 24 hours)
Pulmonary function testing - FVC (time frame: 24 hours)
Pulmonary function testing - PEFR (time frame: 24 hours)

Starting date
August 2016

Contact information
Grant S Lipman, MD

Notes
Not yet recruiting
NCT02811016

- **Trial name or title**: Effect of inhaled budesonide on the incidence and severity of acute mountain sickness at 4559 m
- **Methods**: Prospective, controlled, single-centre study on 51 healthy volunteers at 4559 m
- **Participants**: 51 healthy volunteers
- **Interventions**: Budesonide 200 µg inhaled at 7 a.m. and 7 p.m.
 Budesonide 800 µg inhaled at 7 a.m. and 7 p.m.
 Placebo inhalation at 7 a.m. and 7 p.m.
- **Outcomes**: Assessment of risk and severity of acute mountain sickness by use of 2 internationally standardized and well-established questionnaires
 Venous (and capillary) blood drawings
 Transthoracic echocardiography for assessing pulmonary artery systolic pressure
- **Starting date**: June 2016
- **Contact information**: Marc Berger, Salzburger Landeskliniken
- **Notes**: This study has been completed

NCT02941510

- **Trial name or title**: Inhaled budesonide for altitude illness prevention
- **Methods**: Randomized, double-blinded study administering budesonide, a medication to reduce inflammation in the lungs, to healthy volunteers to examine effects on altitude illness prevention by spending 18 hours overnight at 14,000 ft elevation
- **Participants**: Participants will be recruited from the Denver community and prescreened for eligibility via phone. 100 participants, after consenting, will have baseline data and blood collected and will begin budesonide therapy 72 hours prior to being taken from Denver to Pikes Peak, where they will be observed at altitude for 18 hours. Participants will have the opportunity to withdraw consent at any time and will be monitored continuously by physician-researchers
- **Interventions**: Budesonide; placebo
- **Outcomes**: Primary Outcome Measures:
 1. Changes in inflammation
 2. Risk of Acute Mountain Sickness (AMS)
 3. Changes in gene regulation
- **Starting date**: April 2017
- **Contact information**: University of Colorado, Denver
- **Notes**: This study is not yet open for participant recruitment
AMS: Acute Mountain Sickness; BMI: Body mass index; COPD: Chronic obstructive pulmonary disease; CYP: cytochrome P450 enzymes; dL: decilitre; ECG: electrocardiogram; FEV1: forced expiratory volume in 1 second; FSH: Follicle-stimulating hormone; ft: feet; FVC: forced expiratory vital capacity; GOLD: Global Initiative for Chronic Obstructive Lung Disease criteria; HAH: high altitude headache; HR: heart rate; kg: kilograms; IUD: Intrauterine device; IUS: Intrauterine system; LNG 20: levonorgestrel 20 μg/day; ml: millilitres; mg: milligrams; NSAIDs: Nonsteroidal anti-inflammatory drugs; OTC: over-the-counter; PEFR: peak expiratory flow rate; TM: Morning-after pill; VO\textsubscript{2}max: maximal oxygen consumption.
DATA AND ANALYSES

Comparison 1. Spironolactone: spironolactone vs. placebo

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Risk of acute mountain sickness</td>
<td>2</td>
<td></td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>Totals not selected</td>
</tr>
</tbody>
</table>

Analysis 1.1. Comparison 1 Spironolactone: spironolactone vs. placebo, Outcome 1 Risk of acute mountain sickness.

Review: Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs

Comparison: 1 Spironolactone: spironolactone vs. placebo

Outcome: 1 Risk of acute mountain sickness

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Spironolactone</th>
<th>Placebo</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brookfield 1977</td>
<td>2/6</td>
<td>5/6</td>
<td>0.40 [0.12, 1.31]</td>
<td></td>
</tr>
<tr>
<td>SPACE 2011</td>
<td>27/114</td>
<td>13/79</td>
<td>1.44 [0.79, 2.61]</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1. Risk categories for acute mountain sickness

<table>
<thead>
<tr>
<th>Risk categories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Individuals with no prior history of altitude illness and ascending to ≤ 2800 m/9186 feet.</td>
</tr>
<tr>
<td>Low</td>
<td>Individuals taking ≥ 2 days to arrive at 2500m to 3000 m/8202 feet to 9842 feet with subsequent increases in sleeping elevation < 500 m by day/1640 feet by day.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Individuals with prior history of AMS and ascending to 2500m to 2800 m (8202 feet to 9186 feet) in 1 day.</td>
</tr>
<tr>
<td>Moderate</td>
<td>No history of AMS and ascending to > 2800 m (9186 feet) in 1 day.</td>
</tr>
<tr>
<td>Moderate</td>
<td>All individuals ascending > 500 m/d (1640 feet) (increase in sleeping elevation) at altitudes above 3000 m/9842 feet.</td>
</tr>
<tr>
<td>High</td>
<td>History of AMS and ascending to ≥ 2800 m/9186 feet in 1 day.</td>
</tr>
<tr>
<td>High</td>
<td>All individuals with a prior history of HAPE or HACE.</td>
</tr>
<tr>
<td>High</td>
<td>All individuals ascending to > 3500 m/11482 feet in 1 day.</td>
</tr>
<tr>
<td>High</td>
<td>All individuals ascending > 500 m/1640 feet /d increase in sleeping elevation above > 3500 m/11482 feet.</td>
</tr>
<tr>
<td>High</td>
<td>Very rapid ascents (e.g. Mt Kilimanjaro).</td>
</tr>
</tbody>
</table>

Appendix 2. Medical terms glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anorexia</td>
<td>The lack or loss of appetite accompanied by an aversion to food and the inability to eat</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/68000855</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td>URL</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dizziness</td>
<td>An imprecise term which may refer to a sense of spatial disorientation, motion of the environment, or lightheadedness</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/68004244</td>
</tr>
<tr>
<td>Endothelium</td>
<td>A layer of epithelium that lines the heart, blood vessels (endothelium vascular), lymph vessels (endothelium lymphatic), and the serous cavities of the body</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/68004727</td>
</tr>
<tr>
<td>Fatigue</td>
<td>The state of weariness following a period of exertion, mental or physical, characterized by a decreased capacity for work and reduced efficiency to respond to stimuli</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/68005221</td>
</tr>
<tr>
<td>Hallucination</td>
<td>Subjectively experienced sensations in the absence of an appropriate stimulus, but which are regarded by the individual as real</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/?term=Hallucination</td>
</tr>
<tr>
<td>Hernia</td>
<td>Protrusion of tissue, structure, or part of an organ through the bone, muscular tissue, or the membrane by which it is normally contained</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/68006547</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>A disorder characterized by a reduction of oxygen in the blood</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/68000860</td>
</tr>
<tr>
<td>Insomnia</td>
<td>Disorders characterized by impairment of the ability to initiate or maintain sleep</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/68007319</td>
</tr>
<tr>
<td>Lightheadedness</td>
<td>See dizziness.</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>An unpleasant sensation in the stomach usually accompanied by the urge to vomit</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/68009325</td>
</tr>
<tr>
<td>Pulmonary oedema</td>
<td>Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary oedema prevents efficient pulmonary gas exchange in the pulmonary alveoli, and can be life-threatening</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/?term=Pulmonary+oedema</td>
</tr>
<tr>
<td>Pulmonary alveoli</td>
<td>Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/?term=Pulmonary+alveoli</td>
</tr>
<tr>
<td>Seizures</td>
<td>Clinical or subclinical disturbances of cortical function due to a sudden, abnormal, excessive, and disorganized discharge of brain cells. Clinical manifestations include</td>
<td>https://www.ncbi.nlm.nih.gov/mesh/68012640</td>
</tr>
</tbody>
</table>
Appendix 3. The most frequent adverse events of the pharmacological interventions

<table>
<thead>
<tr>
<th>Drug</th>
<th>Description and contraindications</th>
<th>Adverse events</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetazolamide</td>
<td>Acetazolamide, an inhibitor of the enzyme carbonic anhydrase. Hypersensitivity to acetazolamide or any excipients in the formulation. Since acetazolamide is a sulphonamide derivative, cross-sensitivity between acetazolamide, sulphonamides and other sulphonamide derivatives is possible. Acetazolamide therapy is contraindicated in situations in which sodium and/or potassium blood serum levels are depressed, in cases of marked kidney and liver disease or dysfunction, in suprarenal gland failure, and in hyperchloremic acidosis. It is contraindicated in patients with cirrhosis because of the risk of development of hepatic encephalopathy.</td>
<td>Adverse reactions, occurring most often early in therapy, include paraesthesias, particularly a “tingling” feeling in the extremities, hearing dysfunction or tinnitus, loss of appetite, taste alteration and gastrointestinal disturbances such as nausea, vomiting and diarrhoea; polyuria, and occasional instances of drowsiness and confusion.</td>
<td>DailyMed</td>
</tr>
<tr>
<td>Aspirin</td>
<td>It is a nonsteroidal anti-inflammatory drug.</td>
<td>Reye’s syndrome (a rare but serious illness). Stomach bleeding.</td>
<td>DailyMed</td>
</tr>
<tr>
<td>Bosentan</td>
<td>It is an endothelin receptor antagonist indicated for the treatment of pulmonary arterial hypertension. Pregnancy, pre-existing hepatic impairment.</td>
<td>Elevations of liver aminotransferases (ALT, AST) and liver failure. Early liver injury may preclude future use as disease progresses. Respiratory tract infection and anaemia.</td>
<td>DailyMed</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>Glucocorticoids, naturally occurring and synthetic, are adrenocortical steroids that are</td>
<td>Several adverse events (e.g. hyperglycaemia, fluid retention, hypokalaemic alkalosis, potas-</td>
<td>DailyMed</td>
</tr>
</tbody>
</table>
readily absorbed from the gastrointestinal tract. Glucocorticoids cause varied metabolic effects. In addition, they modify the body's immune responses to diverse stimuli. Naturally occurring glucocorticoids (hydrocortisone and cortisone), which also have sodium-retaining properties, are used as replacement therapy in adrenocortical deficiency states. Their synthetic analogues including dexamethasone are primarily used for their anti-inflammatory effects in disorders of many organ systems.

Contraindicated in systemic fungal infections.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabapentin</td>
<td>Gabapentin is an anticonvulsant. Gabapentin is contraindicated in patients who have demonstrated hypersensitivity to the drug or its ingredients. Somnolence, dizziness, ataxia, fatigue, and nystagmus. DailyMed</td>
</tr>
<tr>
<td>Ginkgo biloba</td>
<td>This homeopathic product has not been evaluated by the Food and Drug Administration for safety or efficacy. FDA is not aware of scientific evidence to support homeopathy as effective. - DailyMed</td>
</tr>
<tr>
<td>Methazolamide</td>
<td>Methazolamide is a potent inhibitor of carbonic anhydrase. Methazolamide therapy is contraindicated in situations in which sodium and/or potassium serum levels are depressed, in cases of marked kidney or liver disease or dysfunction, in adrenal gland failure, and in hyperchloraemic acidosis. In patients with cirrhosis, use may precipitate the development of hepatic encephalopathy. Adverse reactions, occurring most often early in therapy, include paraesthesias, particularly a "tingling" feeling in the extremities; hearing dysfunction or tinnitus; fatigue; malaise; loss of appetite; taste alteration; gastrointestinal disturbances such as nausea, vomiting, and diarrhoea; polyuria; and occasional instances of drowsiness and confusion. DailyMed</td>
</tr>
<tr>
<td>Drug</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>It is a calcium channel blocker. Nifedipine must not be used in cases of cardiogenic shock. It is contraindicated in patients with a known hypersensitivity to any component of the tablet.</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Phenytoin sodium is an antiepileptic drug. Phenytoin is contraindicated in those patients who are hypersensitive to phenytoin or other hydantoins.</td>
</tr>
<tr>
<td>Salmeterol</td>
<td>Long-acting beta2-adrenergic agonist. Contraindicated in patients with asthma. It should be used with caution in patients with cardiovascular disorders, especially coronary insufficiency, cardiac arrhythmias, and hypertension.</td>
</tr>
<tr>
<td>Selective inhibitor of phosphodiesterase type 5 (tadalafil and sildenafil)</td>
<td>It was shown to potentiate the hypotensive effects of nitrates, and its administration to patients who are using organic nitrates, either regularly and/or intermittently, in any form is therefore contraindicated.</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>Aldactone oral tablets contain 25 mg, 50 mg, or 100 mg of the aldosterone antagonist spironolactone. Aldactone is contraindicated for patients with anuria, acute renal insufficiency, significant impairment of renal excretory function, or hyperkalaemia.</td>
</tr>
</tbody>
</table>
Sumatriptan

Sumatriptan is an agonist for a vascular 5-hydroxytryptamine (1) receptor subtype. It should not be given to patients with history, symptoms, or signs of ischemic cardiac, cerebrovascular, or peripheral vascular syndromes. Serious cardiac events, including some that have been fatal. These events are extremely rare and most have been reported in patients with risk factors predictive of CAD. Events reported have included coronary artery vasospasm, transient myocardial ischemias, myocardial infarction, ventricular tachycardia, and ventricular fibrillation.

Theophylline

Theophylline is classified as a methylxanthine. Theophylline should be used with extreme caution in patients with the following clinical conditions due to the increased risk of exacerbation of the concurrent condition: active peptic ulcer disease, seizure disorders and cardiac arrhythmias (not including bradyarrhythmias). Nausea, vomiting, headache, and insomnia.

Appendix 4. MEDLINE (Ovid SP) search strategy

1. `exp Brain Edema/ or exp Pulmonary Edema/ or (?edema adj3 high?altitude or cerebral or pulmonary)).mp. or ((mountain or high?altitude) adj3 sickness or illness).mp. or high?altitude.ti,ab.`
2. `exp Secondary Prevention/ or exp Primary Prevention/ or exp Drug Therapy/ or (drug therapy or prevent* or acclimati?ation or nifedipine or dexamethasone or taladafil or sildenafil or theophylline or salmeterol or acetazolamide or aspirin or sumatriptan or gabapentin or phenytoin or magnesium or ginkgo biloba or ascorbic acid or alpha-tocopherol acetate or alpha-lipoic acid or beta-carotene or selenium or zinc or bosentan or calcium channel blockers or selective inhibitor of phosphodiesterase type or nonsteroidal anti-inflammatory drug* or steroid* or glucocorticosteroid* or corticosteroid* or non-selective phosphodiesterase inhibitor* or carbonic anhydrase inhibitor* or beta agonist* or 5-HT1 receptor agonist* or N-methyl-D-aspartate antagonist* or antioxidant* or vitamin* or mineral* or endothelin antagonist*).mp.`
3. `((randomized controlled trial or controlled clinical trial).pt. or randomized.ab. or placebo.ab. or clinical trials as topic.sh. or randomly.ab. or trial.ti.) not (animals not (humans and animals)).sh.`
4. `1 and 2 and 3`
Appendix 5. Embase (Ovid SP) search strategy

1. brain edema/ or lung edema/ or (edema adj3 (high?altitude or cerebral or pulmonary)).mp. or ((mountain or high?altitude) adj3 (sickness or illness)).ti,ab. or high?altitude.ti,ab.
2. secondary prevention/ or primary prevention/ or drug therapy/ or (drug therapy or prevent* or acclimati?ation or nifedipine or dexamethasone or taladafil or sildenafil or theophylline or salmeterol or acetazolamide or aspirin or sumatriptan or gabapentin or phenytoin or magnesium or ginkgo biloba or ascorbic acid or alpha-tocopherol acetate or alpha-lipoic acid or beta-carotene or selenium or zinc or bosentan or calcium channel blockers or selective inhibitor of phosphodiesterase type or nonsteroidal anti-inflammatory drug* or steroid* or glucocorticosteroid* or corticosteroid* or non-selective phosphodiesterase inhibitor* or carbonic anhydrase inhibitor* or beta agonist* or 5-HT1 receptor agonist* or N-methyl-D-aspartate antagonist* or antioxidant* or vitamin* or mineral* or endothelin antagonist*).ti,ab.
3. (placebo.sh. or controlled study.ab. or random*.ti,ab. or trial*.ti,ab. or ((singl* or doubl* or trebl* or tripl*) adj3 (blind* or mask*)).ti,ab.) not (animals not (humans and animals)).sh.
4. 1 and 2 and 3

Appendix 6. CENTRAL search strategy

#1 MeSH descriptor Brain Edema explode all trees
#2 MeSH descriptor Pulmonary Edema explode all trees
#3 (edema near (high?altitude or cerebral or pulmonary)) or ((mountain or high?altitude) near (sickness or illness)) or high?altitude: ti,ab
#4 (#1 OR #2 OR #3)
#5 MeSH descriptor Secondary Prevention explode all trees
#6 MeSH descriptor Primary Prevention explode all trees
#7 MeSH descriptor Drug Therapy explode all trees
#8 (drug therapy or prevent* or acclimati?ation or nifedipine or dexamethasone or taladafil or sildenafil or theophylline or salmeterol or acetazolamide or aspirin or sumatriptan or gabapentin or phenytoin or magnesium or ginkgo biloba or ascorbic acid or alpha-tocopherol acetate or alpha-lipoic acid or beta-carotene or selenium or zinc or bosentan or calcium channel blockers or selective inhibitor of phosphodiesterase type or nonsteroidal anti-inflammatory drug* or steroid* or glucocorticosteroid* or corticosteroid* or non-selective phosphodiesterase inhibitor* or carbonic anhydrase inhibitor* or beta agonist* or 5-HT1 receptor agonist* or N-methyl-D-aspartate antagonist* or antioxidant* or vitamin* or mineral* or endothelin antagonist*):ti,ab
#9 (#5 OR #6 OR #7 OR #8)
#10 #4 and #9

Appendix 7. Search strategy for LILACS via BIREME interface

“EDEMA CEREBRAL” or “edema pulmonary$” or “mountain sickness” or “high-altitude sickness” or “montaña enfermedad$” or “mal da montanha$” or “doença de alta altitude$” or “mal de altura$”

Appendix 8. WHO International Trials Registry Portal search

Advanced search
high-altitude pulmonary oedema (in the title field)
Appendix 9. Study eligibility screening and data extraction form

Intervention for preventing High altitude illness

Study Selection, Quality Assessment & Data Extraction Form

<table>
<thead>
<tr>
<th>First author</th>
<th>Journal/Conference Proceedings etc</th>
<th>Year</th>
</tr>
</thead>
</table>

Study eligibility

<table>
<thead>
<tr>
<th>RCT/Quasi/CCT (delete as appropriate)</th>
<th>Relevant participants</th>
<th>Relevant interventions</th>
<th>Relevant outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes / No / Unclear</td>
<td>Yes / No / Unclear</td>
<td>Yes / No / Unclear</td>
<td>Yes / No* / Unclear</td>
</tr>
</tbody>
</table>

* Issue relates to selective reporting when authors may have taken measurements for particular outcomes, but not reported these within the paper(s). Reviewers should contact trialists for information on possible non-reported outcomes & reasons for exclusion from publication. Study should be listed in ‘Studies awaiting assessment’ until clarified. If no clarification is received after three attempts, study should then be excluded.

Do not proceed if any of the above answers are ‘No’. If study to be included in ‘Excluded studies’ section of the review, record below the information to be inserted into ‘Table of excluded studies’

Freehand space for comments on study design and treatment:

References to trial
Check other references identified in searches. If there are further references to this trial link the papers now & list below. All references to a trial should be linked under one Study ID in RevMan.

<table>
<thead>
<tr>
<th>Code each paper</th>
<th>Author(s)</th>
<th>Journal/Conference Proceedings etc</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>The paper listed above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Further papers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Participants and trial characteristics

<table>
<thead>
<tr>
<th>Participant characteristics</th>
<th>Further details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean, median, range, etc)</td>
<td></td>
</tr>
<tr>
<td>Sex of participants (numbers / %, etc)</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Rate of ascent (m/h)</td>
<td></td>
</tr>
<tr>
<td>Final altitude reached (metres)</td>
<td></td>
</tr>
<tr>
<td>AMS scale</td>
<td></td>
</tr>
<tr>
<td>History of HAI</td>
<td></td>
</tr>
<tr>
<td>Type of HAI reported</td>
<td></td>
</tr>
</tbody>
</table>

Intervention characteristics

<table>
<thead>
<tr>
<th>Intervention characteristics</th>
<th>Further details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Doses</td>
<td></td>
</tr>
<tr>
<td>Administration route</td>
<td></td>
</tr>
<tr>
<td>Time to administration</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td></td>
</tr>
</tbody>
</table>

If RCT included a combination:
<table>
<thead>
<tr>
<th>Intervention characteristics</th>
<th>Further details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Doses</td>
<td></td>
</tr>
<tr>
<td>Administration route</td>
<td></td>
</tr>
<tr>
<td>Time to administration</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td></td>
</tr>
</tbody>
</table>

If RCT included acclimatization:

<table>
<thead>
<tr>
<th>Intervention characteristics</th>
<th>Rate of ascent (m/h)</th>
<th>Further details</th>
</tr>
</thead>
</table>

Methodological quality

Allocation of intervention

State here method used to generate allocation and reasons for grading

<table>
<thead>
<tr>
<th>Grade (circle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk of bias (Random)</td>
</tr>
<tr>
<td>High risk of bias (e.g. alternate)</td>
</tr>
<tr>
<td>Unclear</td>
</tr>
</tbody>
</table>

Concealment of allocation

Process used to prevent foreknowledge of group assignment in a RCT, which should be seen as distinct from blinding

State here method used to conceal allocation and reasons for grading

<table>
<thead>
<tr>
<th>Grade (circle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk of bias</td>
</tr>
<tr>
<td>High risk of bias</td>
</tr>
<tr>
<td>Unclear</td>
</tr>
</tbody>
</table>
Blinding

<table>
<thead>
<tr>
<th>Person responsible for participants care</th>
<th>Yes / No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant</td>
<td>Yes / No</td>
</tr>
<tr>
<td>Outcome assessor</td>
<td>Yes / No</td>
</tr>
<tr>
<td>Other (please specify)</td>
<td>Yes / No</td>
</tr>
</tbody>
</table>

Intention-to-treat

An intention-to-treat analysis is one in which all the participants in a trial are analysed according to the intervention to which they were allocated, whether they received it or not.

<table>
<thead>
<tr>
<th>All participants entering trial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15% or fewer excluded</td>
<td></td>
</tr>
<tr>
<td>More than 15% excluded</td>
<td></td>
</tr>
<tr>
<td>Not analysed as ‘intention-to-treat’</td>
<td></td>
</tr>
<tr>
<td>Unclear</td>
<td></td>
</tr>
</tbody>
</table>

Free selective report

State here method used to generate allocation and reasons for grading.

<table>
<thead>
<tr>
<th>Grade (circle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk of bias</td>
</tr>
<tr>
<td>High risk of bias</td>
</tr>
<tr>
<td>Unclear</td>
</tr>
</tbody>
</table>

Were withdrawals described?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>not clear</th>
</tr>
</thead>
</table>

Discuss if appropriate.
Data extraction

Outcomes relevant to your review

Copy and paste from ‘Types of outcome measures’

<table>
<thead>
<tr>
<th>Reported in paper (circle)</th>
<th>Risk of AMS (headache, nausea, insomnia, dizziness, and sleep disorder)</th>
<th>Yes / No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>risk of HACE.</td>
<td>Yes / No</td>
</tr>
<tr>
<td></td>
<td>risk of HAPE.</td>
<td>Yes / No</td>
</tr>
<tr>
<td></td>
<td>Safety of adverse events</td>
<td>Yes / No</td>
</tr>
<tr>
<td></td>
<td>Safety (adverse drug reaction)</td>
<td>Yes / No</td>
</tr>
</tbody>
</table>

For Dichotomous data

<table>
<thead>
<tr>
<th>Code of paper</th>
<th>Outcomes</th>
<th>Intervention group (n)</th>
<th>Control group (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>risk of AMS ((headache, nausea, insomnia, dizziness, and sleep disorder)</td>
<td>n = number of participants, not number of events</td>
<td>n = number of participants, not number of events</td>
</tr>
<tr>
<td></td>
<td>risk of HACE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>risk of HAPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety of adverse events</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety (adverse drug reaction)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other information which you feel is relevant to the results

Indicate if: any data were obtained from the primary author; if results were estimated from graphs etc; or calculated by you using a formula (this should be stated and the formula given). In general if results not reported in paper(s) are obtained this should be made clear here to be cited in review.
References to other trials

Did this report include any references to published reports of potentially eligible trials not already identified for this review?

<table>
<thead>
<tr>
<th>First author</th>
<th>Journal / Conference</th>
<th>Year of publication</th>
</tr>
</thead>
</table>

Did this report include any references to unpublished data from potentially eligible trials not already identified for this review? If yes, give list contact name and details.

Trial characteristics

<table>
<thead>
<tr>
<th>Further details</th>
</tr>
</thead>
</table>

- **Single centre / multicentre**
- **Country / Countries**
- **How was participant eligibility defined?**
- **How many people were randomized?**
- **Number of participants in each intervention group**
- **Number of participants who received intended treatment**
- **Number of participants who were analysed**
- **Drug treatment(s) used**
- **Dose / frequency of administration**
- **Duration of treatment (State weeks / months, etc, if cross-over trial give length of time in each arm)**
- **Median (range) length of follow-up reported in this paper (state weeks, months or years or if not stated)**
Time-points when measurements were taken during the study

Time-points reported in the study

Time-points you are using in RevMan

Trial design (e.g. parallel / cross-over*)

Other

Appendix 10. Assessment of risk of bias in included studies

We will assess the following domains as low risk of bias, unclear or high risk of bias:

- Random sequence generation
- Allocation concealment
- Blinding (of participants, personnel and outcome assessors)
- Incomplete outcome data
- Selective reporting
- Free of other bias (baseline imbalance, early stopping, academic fraud, drug company involvement) (Gurusamy 2009; Ioannidis 2008a; Ioannidis 2008b).

We will use the following definitions:

1. **Sequence generation (checking for possible selection bias)**
 We will describe for each included study the method used to generate the allocation sequence in sufficient detail to allow an assessment of whether it should produce comparable groups.
 We will assess the method as:
 - Low risk (any truly random process, e.g. random number table; computer random number generator);
 - High risk (any non-random process, e.g. odd or even date of birth; hospital or clinic record number);
 - Unclear , if the trial was described as randomized, but the method used for the allocation sequence generation was not described.

2. **Allocation concealment (checking for possible selection bias)**
 We will describe for each included study the method used to conceal the allocation sequence in sufficient detail and determine whether intervention allocation could have been foreseen in advance of, or during recruitment, or changed after assignment.
 We will assess the methods as:
 - Low risk (e.g. telephone or central randomization; consecutively numbered sealed opaque envelopes);
 - High risk (open random allocation; unsealed or non-opaque envelopes, alternation; date of birth);
 - Unclear , if the trial was described as randomized, but the method used to conceal the allocation was not described.

3. **Blinding or masking (checking for possible performance bias)**
 We will describe for each included study the methods used, if any, to blind study participants and personnel from knowledge of which intervention a participant received. We will judge studies at low risk of bias if they were blinded, or if we judge that the lack of blinding could not have affected the results. We will assess blinding separately for different outcomes or classes of outcomes.
 We will assess the methods as:
 - Low risk, High risk or unclear for participants;
 - Low risk, High risk or unclear for personnel;
 - Low risk , High risk or unclear for outcome assessors.
(4) Incomplete outcome data (checking for possible attrition bias through withdrawals, drop-outs, protocol deviations)

- Low risk, the numbers and reasons for drop-outs and withdrawals in all intervention groups were described or if it was specified that there were no dropouts or withdrawals.
- Unclear, the report gave the impression that there had been no drop-outs or withdrawals, but this was not specifically stated.
- High risk, the number or reasons for drop-outs and withdrawals were not described.

We will further examine the percentages of drop-outs overall in each trial and per randomization arm and we will evaluate whether intention-to-treat analysis has been performed or could be performed from the published information.

Were all randomized participants analysed in the group to which they were allocated? (intention-to-treat (ITT) analysis)

- Low risk of bias: specifically reported by authors that ITT was undertaken and this was confirmed on study assessment, or not stated but evident from study assessment that all randomized participants are reported/analysed in the group they were allocated to for the most important time point of outcome measurement irrespective of non-compliance and co-interventions.
- High risk of bias: lack of ITT confirmed on study assessment (patients who were randomized were not included in the analysis because they did not receive the study intervention, they withdrew from the study or were not included because of protocol violation) regardless of whether ITT reported or not.
- 'As-treated' analysis done with substantial departure of the intervention received from that assigned at randomization; potentially inappropriate application of simple imputation.
- Unclear: described as ITT analysis, but unable to confirm on study assessment, or not reported and unable to confirm by study assessment.

(5) Selective reporting bias

We will describe for each included study how we investigated the possibility of selective outcome reporting bias and what we found. We will assess the methods as:

- Low risk (where it is clear that all of the study's pre-specified outcomes and all expected outcomes of interest to the review have been reported);
- High risk (where not all the study's pre-specified outcomes have been reported; one or more reported primary outcomes were not pre-specified; outcomes of interest are reported incompletely and so cannot be used; study fails to include results of a key outcome that would have been expected to have been reported);
- Unclear: not all pre-defined, or clinically relevant and reasonably expected outcomes were reported on, or were not reported fully, or it was unclear whether data on these outcomes were recorded or not.

(6) Free of other bias

We will describe for each included study any important concerns we have about other possible sources of bias (Gurusamy 2009; Ioannidis 2008a; Ioannidis 2008b).

- Low risk of bias, the trial appears to be free of other components that could put it at risk of bias.
- Unclear, the trial may or may not be free of other components that could put it at risk of bias.
- High risk of bias), there are other factors in the trial that could put it at risk of bias, e.g., no sample size calculation made, early stopping.

(7) Overall risk of bias

We will make explicit judgements about whether studies are at high risk of bias, according to the criteria given in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). With reference to (1) to (6) above, we will assess the likely magnitude and direction of the bias and whether we consider it is likely to impact on the findings. We will explore the impact of the level of bias through undertaking sensitivity analyses - see Sensitivity analysis.
CONTRIBUTIONS OF AUTHORS

Conceiving the review: AMC
Co-ordinating the review: AGG, AMC, IAR
Undertaking manual searches: VNE, DMF and IAR
Screening search results: AGG, DMF and IAR
Organizing retrieval of papers: AGG, DMF and IAR
Screening retrieved papers against inclusion criteria: VNE, DMF and IAR
Appraising quality of papers: VNE, DMF, AGG and IAR
Abstracting data from papers: VNE, DMF, AGG and IAR
Providing additional data about papers: VNE, DMF, AGG and IAR
Obtaining and screening data on unpublished studies: VNE, DMF, AGG and IAR
Data management for the review: IAR
Entering data into Review Manager 5 (RevMan 5) (Review Manager 2014): IAR
RevMan 5 statistical data: IAR and AMC
Other statistical analysis not using RevMan 5: AMC and IAR
Interpretation of data: VNE, DMF, AGG, AMC and IAR
Statistical inferences: VNE, DMF, AGG, AMC and IAR
Writing the review: VNE, DMF, AGG, AMC and IAR
Securing funding for the review: VNE, DMF, AGG, AMC and IAR
Guarantor for the review (one author): AGG
Person responsible for reading and checking review before submission: IAR

DECLARATIONS OF INTEREST

Alejandro Gonzalez Garay: nothing to declare.
Victor H Nieto Estrada: nothing to declare.
Daniel Molano Franco: nothing to declare.
Arturo Marti Carvajal: nothing to declare.
Ingrid Arevalo-Rodriguez: nothing to declare.
Sources of Support

Internal sources
- Methodology Research Unit/Neonatology, Instituto Nacional de Pediatría, Mexico. Academic.

External sources
- Cochrane Anaesthesia Group, Denmark. Academic.

Differences between protocol and review

Given that the original protocol was published in 2012, several sections needed updating to fulfil the current methodological guidelines for Cochrane Reviews (Higgins 2016).

We made the following changes to the published protocol (Martí-Carvajal 2012).

1. Considering the numerous interventions assessed for HAI prevention and on the recommendation of the ACE editors, we split the review into three parts. This current review is the second in a series of three, and focuses on less commonly used agents to prevent this condition. This change has implications in the title, scope and objective of this review and in the other reviews belonging to this series.

2. The Background was updated with new references to reflect current evidence about the target condition, as well as the scope on less commonly used interventions to prevent HAI.

3. The primary and secondary outcomes presented in the protocol (Martí-Carvajal 2012) - were modified to follow the MECIR guidelines (Higgins 2016), and improve their understanding. In particular, we made the following changes.

 1. We removed 'All-cause mortality (by all causes or specific)' as a primary outcome of this review. This is because the risk of mortality is low in the general population, and it is not the primary goal for prevention.

 2. We removed the outcome 'Combined incidence of AMS, HAPE or HACE (any of these alone or in combination)'. This is because this outcome is not often reported in studies, and this information can be easily calculated by the separate reporting of AMS, HAPE and HACE.

 3. Previously the 'Risk of AMS' was a secondary outcome. It is a primary event to assess in prevention trials of HAI. We therefore moved this outcome from the list of secondary outcomes to the primary outcomes in this series of reviews. The risk of HAPE, HACE and adverse events are also important outcomes and they were included as secondary outcomes.

 4. We included a new secondary outcome 'Difference in HAI/AMS scores at high altitude'. This is because it is frequently reported in studies, reflecting the severity of the disease.

4. We limited the types of studies included to randomized controlled trials. We excluded quasi-randomized studies and prospective observational studies for evaluating clinical effectiveness, even if they reported adverse events. This was due to the high risk of bias involved in these types of studies.

5. We selected for this review five less commonly used types of interventions for the prevention of HAI. Other interventions will be addressed in the other two reviews belonging to this series.

6. Despite the fact that the protocol (Martí-Carvajal 2012) did not include considerations about any unit of analysis, we identified one cross-over study for this review. It was included in our review to favour the full report of all evidence and it was analysed separately from parallel studies.
7. We stated in the protocol that we would contact trial authors in case of missing data or selective reporting (Martí-Carvajal 2012). However we were unable to undertake this task because in most cases no contact information was supplied in the publication.

8. We introduce several modifications in the Dealing with missing data section, in order to clarify the ITT analysis performed and to present the methods to impute missing information (mostly related to standard deviations).

9. Under Data synthesis we added a method named trial sequential analyses (TSA). However, due to the scarcity of data for the assessed comparisons in this review, and following the advice of ACE Editors, we decided not to report the TSA results in this case (all of them having only one study).

10. We also made extensive modifications to the Subgroup analysis and investigation of heterogeneity section, and we selected only three variables to analyse. However, we were unable to find information about significant pre-existing disease in included trials.

11. Due to scarcity of information we were not able to perform the planned sensitivity and subgroup analyses, as well as exploration of risk of reporting bias.

12. We used STATA 14 and the CS command to estimate the relative risk from individual studies. A method for this estimation was not included in the published protocol (Martí-Carvajal 2012).